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3 Università di Pavia and INFN, Sezione di Pavia, I-27100 Pavia, Italy

Received: 12 November 1998 / Published online: 1 March 1999

Abstract. We relate ordinary and skewed parton distributions to soft overlap contributions to elastic form
factors and large angle Compton scattering, using light-cone wave functions in a Fock state expansion
of the nucleon. With a simple ansatz for the wave functions of the three lowest Fock states we achieve
a good description of unpolarised and polarised parton distributions at large x, and of the data for the
Dirac form factor and for Compton scattering, both of which can be saturated with soft contributions only.
Large angle Compton scattering appears as a good case to investigate the relative importance of soft and
hard contributions in exclusive processes which are sensitive to the end point regions of the nucleon wave
function.

1 Introduction

The recent theoretical developments for real and virtual
Compton scattering, which have lead to the introduction
of skewed parton distributions1 (SPDs) [1–3], have re-
newed the interest in the interplay between hard inclu-
sive and exclusive reactions. In the light-cone approach
the link between these classes of reactions is mediated by
light-cone wave functions (LCWFs). Although this con-
nection has been known for quite some time [4,5] it has
not yet been exploited practically.

An important question in this context is the size of per-
turbative QCD contributions to exclusive reactions. There
is general agreement that the conventional hard scatter-
ing approach (see [4] and references therein), in which the
collinear approximation is used, gives the correct descrip-
tion of electromagnetic form factors and perhaps other
exclusive processes in the limit of asymptotically large
momentum transfer. The onset of that asymptotic be-
haviour is however subject to controversy. It has turned
out that for the electromagnetic form factors of the pion
and the nucleon or for Compton scattering agreement be-
tween data and the perturbative contributions is only ob-
tained if distribution amplitudes are employed that are
strongly concentrated in the end point regions, where one
of the parton momentum fractions tends to zero. Such dis-
tribution amplitudes have been proposed by Chernyak et
al. [6] on the basis of QCD sum rules, but their derivation

1 The name skewed parton distributions has been proposed to
amalgamate the different terms (nonforward, off-forward, non-
diagonal, off-diagonal) used in the literature for closely related
quantities.

has been severely criticised, cf. for instance [7]. At least for
form factors but likely also for Compton scattering they
lead to perturbative contributions which are dominated
by contributions from the end point regions where the use
of perturbative QCD is not justified [8]. In the case of
the pion distribution amplitudes concentrated in the end
point region are now excluded by the CLEO data [9] on
the πγ transition form factor, where they lead to pertur-
bative contributions much too large in comparison with
experiment [10,11]. In the case of the nucleon form factor
it has been shown in [12] that the inclusion of transverse
momentum effects as well as Sudakov suppressions [13]
in the perturbative analysis leads to a substantial reduc-
tion of the perturbative contribution which then is much
smaller than experiment.

There is another difficulty with distribution amplitu-
des concentrated in the end point regions: if they are com-
bined with a plausible Gaussian transverse momentum de-
pendence in a wave function and if from that LCWF the
soft overlap contribution [14] to the nucleon form factor is
evaluated one obtains a result that exceeds the form fac-
tor data dramatically [8]. Such wave functions also lead to
valence quark distributions that are much larger at large
x than those derived from deeply inelastic lepton-nucleon
scattering [15]. Starting from all these observations and
from the assumption of soft physics dominance, the au-
thors of [16] derived a LCWF for the nucleon’s valence
Fock state by fitting its free parameters to the valence
quark distribution functions and the form factors in the
momentum transfer region from about 5 to 30 GeV2. The
LCWF obtained in [16] is close to the asymptotic form and
very different from the end point concentrated ones. Re-
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cently Radyushkin [17] generalised the overlap approach
to large angle Compton scattering and showed that soft
physics, evaluated from LCWFs similar to the one used in
[16], can account for high energy Compton scattering in
the experimentally accessible kinematical region as well.
It goes without saying that the soft contributions to form
factors and Compton scattering are suppressed by inverse
powers of the hard scales compared with the perturbative
contributions, which will always dominate at very large
energy and momentum transfer.

The purpose of the present paper is firstly to extend
the analysis of [16] to higher Fock states in order to explore
their importance relative to the lowest one, and secondly
to include Compton scattering in the analysis, following
Radyushkin’s work [17]. In Sect. 2 we present some kine-
matics of the elastic form factor and of Compton scat-
tering. We then give a general discussion concerning soft
contributions and the essential conditions for a represen-
tation of form factors and other processes as an overlap
of LCWFs (Sect. 3). Soft contributions to real and virtual
Compton scattering arising form the handbag diagrams
will be discussed in Sect. 4. In the next section, Sect. 5, we
introduce our parametrisations of LCWFs for the lowest
Fock states. In Sects. 6, 7, 8 we respectively evaluate par-
ton distributions, form factors and large angle Compton
scattering. As an extension of evaluating parton distribu-
tions in the Fock state approach we also calculate skewed
parton distributions (Sect. 9). Since our LCWFs describe
quite well the quantities mentioned before, our results for
the skewed distributions may convey an impression how
these functions look like. The paper ends with our sum-
mary (Sect. 10).

2 Kinematics

To begin we give our notation for the elastic form factor
and for Compton scattering and introduce several refer-
ence frames we will need later.

2.1 The elastic form factor and Compton scattering

The external momenta of the one- and two-photon pro-
cesses γ∗p → p and γ∗p → γp are denoted as shown
in Fig. 1(a) and (b). We use the Mandelstam variables
s = (p + q)2, t = ∆2, u = (p − q′)2, and write Q2 = −q2
for the incoming photon virtuality in Compton scattering
and m2 = p2 = p′2 for the squared proton mass. Note
that we write ∆ (and not q) for the momentum transfer
to the proton in the elastic form factor, reserving q for the
incoming photon in the Compton process; this will be use-
ful to display the similarities of the one- and two-photon
processes. We denote the momenta of the active partons,
i.e. those that couple to the photons by k and k′, and for
the parton-photon subprocess in Fig. 1 (b) we use Man-
delstam variables ŝ = (k + q)2, t̂ = t and û = (k − q′)2.
Whenever it is necessary to distinguish the momenta of
active and spectator partons we will label the active one

with an index j and the spectators with an index i (i 6= j);
outgoing momenta will always be indicated by a prime.

In the various reference frames described below we in-
troduce light cone variables v± = (v0 ± v3)/

√
2 and the

transverse part v⊥ = (v1, v2) for any four-vector v and
use component notation v = [v+, v−,v⊥]. We finally de-
fine the ratios

x =
k+

p+ , ζ = −∆+

p+ = 1 − p′+

p+ , η =
q′+

p+ (1)

of plus-components; positivity of the energy of the final
state proton and photon implies ζ < 1 and η ≥ 0.

Let us take a closer look at the physical region of the
variables t and ζ. In any reference frame we can write

p =
[
p+ ,

m2 + p2
⊥

2p+ , p⊥

]
,

p′ =
[

(1 − ζ)p+ ,
m2 + p′2

⊥
2(1 − ζ)p+ , p′

⊥

]
(2)

using our definition of ζ and the on-shell conditions for
the proton momenta. With (2) and ζ < 1 we have

−t =
ζ2m2

1 − ζ
+

1
1 − ζ

(
(1 − ζ)p⊥ − p′

⊥
)2

≥ ζ2m2

1 − ζ
, (3)

which imposes a minimum value on −t at given ζ. Note
that this is independent of the process considered.

2.2 A symmetric frame

For reasons that will become apparent in Sect. 3 frames
where ∆+ = 0, i.e. ζ = 0, play a special role in the context
of overlap contributions. We shall use a frame where

p =
[
p+ ,

m2 − t/4
2p+ , −1

2
∆⊥

]
,

p′ =
[
p+ ,

m2 − t/4
2p+ ,

1
2

∆⊥

]
, (4)

which treats the transverse momenta of incoming and out-
going hadron in a symmetric way and presents the further
simplification that ∆− = 0. Note that t = −∆2

⊥ here.
Condition (4) fixes the frame up to a boost along the 3-
axis. For the elastic form factor one may take any frame
satisfying (4); in the case of Compton scattering a sym-
metric choice is to further impose p3 + q3 = 0. Note that
for real Compton scattering this is just the c.m. frame
with the 3-axis along p + p′, while with a virtual initial
photon it does not coincide with the centre of mass. For
the photon momenta we have

q =
[
ηp+ ,

(t+Q2)2

−4t
1

2ηp+ ,
t−Q2

2t
∆⊥

]
,

q′ =
[
ηp+ ,

(t+Q2)2

−4t
1

2ηp+ , − t+Q2

2t
∆⊥

]
(5)
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(a)

k k0 = k +�

p p0 = p+�

�

(b)

k k0 = k +�

p

q

p0 = p+�

q0 = q ��

Fig. 1a,b. Overlap diagrams for
a the elastic form factor and
b Compton scattering. Lines p
and p′ denote protons, k and
k′ quarks or antiquarks, and
the horizontal lines represent
any number of spectator par-
tons. The small blob attached to
the photon lines stands for the
pointlike quark-photon coupling
in a and for the two diagrams of
Fig. 2 in b

with

η =
t+Q2

t

s+ u− 2m2

s− u+ 2
√
s (u− u1) (t0 − t)/t

, (6)

where t = t0 corresponds to forward and u = u1 to back-
ward scattering in the photon-proton c.m. We shall in the
following refer to this frame as the “symmetric frame”.

2.3 The photon-proton c.m.

As we will see in Sect. 3.1.2 the symmetric frame just de-
scribed is not suitable for our discussion of deeply virtual
Compton scattering (DVCS). In that case we will use the
c.m. frame with the 3-axis pointing in the incoming proton
direction, where

p =
[
p+ ,

m2

2p+ , 0⊥

]
,

p′ =
[

(1 − ζ) p+ ,
m2 + ∆2

⊥
2(1 − ζ)p+ , ∆⊥

]
(7)

and

q =
[

(η − ζ) p+ ,
−Q2

2(η − ζ)p+ , 0⊥

]
, (8)

and again p3 + q3 = 0. The non-vanishing plus compo-
nent of the momentum transfer is characterised by the
skewedness parameter ζ; the total momentum transfer to
the proton reads

∆ =
[

−ζ p+ ,
ζm2 + ∆2

⊥
2p+(1 − ζ)

, ∆⊥

]
(9)

and its square is

t = −ζ2m2 + ∆2
⊥

1 − ζ
. (10)

Notice that the relation (10) follows from (7) alone and
thus holds in any frame where p⊥ = 0. In the photon-
proton c.m. frame we have

ζ = xN
Q2 − t(1 − xN )
Q2 + x2

N m2 , η = ζ − xN (11)

where

xN =
2xBj

1 +
√

1 + 4x2
Bj m

2/Q2
, xBj =

Q2

2p · q (12)

respectively denote Nachtmann’s and Bjorken’s variable.
In the kinematical region of DVCS, i.e. when −t is small,
and Q2 and s are large (11) simplifies to ζ ≈ xBj and
η ≈ 0.

2.4 Frames for the hadron LCWFs

The arguments of LCWFs are given as the plus-momen-
tum fractions xi and the transverse parts k⊥i of parton
momenta in a frame where the transverse momentum of
the corresponding hadron is zero. We will call those sys-
tems “hadron frames” and refer to transverse parton mo-
menta in an appropriate hadron frame as “intrinsic” trans-
verse momenta.

The transformation from a given frame to a hadron
frame can be achieved by a “transverse boost” (cf. e.g.
[18]) which leaves the plus component of any momentum
vector a unchanged, and which involves a parameter b+
and a transverse vector b⊥:[

a+ , a− , a⊥
]

−→
[
a+ , a− − a⊥ · b⊥

b+
+
a+ b 2

⊥
2 (b+)2

, a⊥ − a+

b+
b⊥

]
.

(13)

Starting for instance from the symmetric frame of Sect. 2.2
the choice b+ = p+, b⊥ = −∆⊥/2 transforms the mo-
menta of the incoming hadron and its partons as

p −→ p̃ =
[
p+ ,

m2

2p+ , 0⊥

]
,

ki −→ k̃i =
[
xip

+ , . . . , k⊥i + xi
∆⊥
2

]
, (14)

where we suppressed the minus components of the parton
momenta, whose expression we will not need. This is an
appropriate frame to read off the arguments of the LCWF
of the incoming hadron as xi and k̃⊥i = k⊥i + xi ∆⊥/2.
The analogous boost with the choice b+ = p+, b⊥ =
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+∆⊥/2 relates the symmetric frame with a frame appro-
priate for identifying the arguments of the LCWF for the
scattered hadron as x′

i and k̂′
⊥i = k′

⊥i − x′
i ∆⊥/2.

Incoming and outgoing parton momenta in the over-
lap contributions Fig. 1 are related by k′

i = ki (i 6= j)
for the spectator partons and k′

j = kj +∆ for the active
parton which takes the momentum transfer in the scat-
tering. Using the transformations between the symmetric
frame and the in/out-hadron frames established above we
can directly express the LCWF arguments for the outgo-
ing hadron (denoted by a hat) in terms of the ones for the
incoming hadron (denoted by a tilde):

x̂′
i = x̃i , k̂′

⊥i = k̃⊥i − x̃i ∆⊥ for i 6= j ,

x̂′
j = x̃j , k̂′

⊥j = k̃⊥j + (1 − x̃j)∆⊥ , (15)

where we could have dropped the hat/tilde notation for
the momentum fractions which are not changed by the
boost (13).

For the case of deeply virtual Compton scattering the
photon-proton c.m. frame introduced in Sect. 2.3 is al-
ready the appropriate hadron frame to identify the ar-
guments of the LCWF of the incoming proton. By the
boost (13) with the parameter values b+ = (1 − ζ) p+,
b⊥ = ∆⊥ one obtains the momenta in the corresponding
frame where the outgoing proton has zero transverse mo-
mentum. LCWF arguments for the outgoing proton (de-
noted by a breve) are related to the ones of the LCWF of
the incoming proton as

x̆′
i =

xi

1 − ζ
, k̆′

⊥i = k⊥i − xi

1 − ζ
∆⊥ for i 6= j ,

x̆′
j =

xj − ζ

1 − ζ
, k̆′

⊥j = k⊥j +
1 − xj

1 − ζ
∆⊥ , (16)

where according to its definition the plus momentum frac-
tion in the LCWF of the scattered proton is taken with
respect to p′+ = (1 − ζ) p+ and not to p+. We notice that
for ζ = 0 (16) takes the same form as (15).

3 The theory of soft contributions

In this section we are concerned with soft overlap contribu-
tions to hard exclusive processes. They are contributions
where only some of the partons in the external hadrons
are active, i.e. participate in a hard scattering, while the
other partons remain spectators.

3.1 Bethe-Salpeter and light cone wave functions

The evaluation of overlap contributions in terms of light
cone wave functions requires some care. An example is the
Drell-Yan overlap formula [14] of the elastic form factor,
for which Isgur and Llewellyn Smith [8] observed that dif-
ferent results are obtained in different reference frames.
Sawicki [19] has shown the origin of this discrepancy: in
certain reference frames there are overlap contributions

which are not contained in the Drell-Yan formula; when
they are taken into account Lorentz invariance is restored.
We shall first review Sawicki’s arguments [19,20] for the
form factor and then investigate the case of Compton scat-
tering.

3.1.1 The elastic form factor

Our starting point to obtain the overlap formula for the
form factor is the diagram of Fig. 1(a) in the framework
of equal-time quantisation and covariant perturbation the-
ory. The hadron-parton vertices, represented by the large
blobs in the diagram, are described by Bethe-Salpeter
wave functions ΨBS . For simplicity we consider a scalar
hadron coupling to two scalar partons, so that there is
only one spectator line in the diagram Fig. 1(a). We fur-
ther work in a toy theory where the hadron has a pointlike
coupling to the two partons; to leading order in the cou-
pling constant the wave function ΨBS(k) of the hadron
with momentum p is then given by the coupling times the
free propagators for the partons with momenta k and p−k.
In general (and in particular for QCD) ΨBS(k) will have
a more complicated analytic structure in the virtualities
k2 and (p − k)2 involving branch cuts in these variables.
Their discussion is beyond the scope of this paper and we
only retain the propagator poles in these variables. This
will be sufficient to exhibit the points we want to make.

The aim is now to perform the loop integration over
k− in Fig. 1(a) so as to reduce ΨBS(k) and ΨBS(k′) to
LCWFs. For this we use that up to a normalisation fac-
tor a LCWF is obtained from the corresponding Bethe-
Salpeter wave function, say ΨBS(k), by the integral

∫
dk−

ΨBS(k) at fixed k+ and k⊥. Note that this relation does
not only hold in frames where the hadron has zero trans-
verse momentum; with (13) we see in particular that this
integral is invariant under transverse boosts. The k−-inte-
gration in Fig. 1(a) is readily performed using Cauchy’s
theorem since the analytic structure of the diagram is
given by the propagator poles in our model. Writing

k− =
k2 + k2

⊥
2p+x

=
(k − p)2 + (k⊥ − p⊥)2

2p+(x− 1)
+ p−

=
(k +∆)2 + (k⊥ + ∆⊥)2

2p+(x− ζ)
−∆− (17)

and using that the poles in k2, (k − p)2, (k + ∆)2 are
situated just below the real axes in these variables we see
that the propagator poles are below or above the real k−-
axis, depending on the value of x. For definiteness we now
take ζ ≥ 0, where we have the following cases:

1. For x > 1 and for x < 0 all poles are on same side.
Closing the integration contour in the half plane where
there are no singularities one obtains a zero integral.

2. For 1 > x > ζ we pick up the pole in (p − k)2 alone
when closing the integration contour in the upper half
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plane. The diagram is then given by the propagators
of k and k + ∆, evaluated at the value of k− where
p − k is on shell. Applying an analogous argument to
the integral

∫
dk− ΨBS(k) we find that a LCWF can be

written as the hadron-parton coupling times one par-
ton propagator, evaluated at the value of k− where the
other propagator is on shell. As a by-product one finds
that the plus momentum fractions of the partons w.r.t.
the hadron are always between 0 and 1, otherwise the
integral is zero. In total we find that the diagram for
the form factor is given by the product of two hadron
LCWFs, as stated in the Drell-Yan formula.

3. For ζ > x > 0 we can pick up the residue at the
pole in k2, or alternatively the sum of residues for the
poles in (p − k)2 and (k + ∆)2. In the term where k
(or k + ∆) is on shell both partons in the hadron p′
(or p) are both off-shell, which cannot be rewritten in
terms of a LCWF. Note that for ζ > x > 0 the parton
that has been struck by the photon has negative plus-
momentum fraction x−ζ, which does not correspond to
a parton going into hadron p′; a situation that clearly
cannot be expressed through a LCWF. This contribu-
tion is missing if one naively writes down the Drell-Yan
formula in a frame where ζ 6= 0: here is the origin of
the paradox observed in [8].2

We thus see that in order to obtain an overlap represen-
tation in terms of two-parton LCWFs for each hadron we
need to go to a reference frame where ζ, or in other words,
∆+ is zero. Such a frame was in fact chosen in the original
work by Drell and Yan.3

The argument goes along the same lines if one has
more than one spectator and takes a Bethe-Salpeter wave
function with only the propagator pole in each parton.
Let us label the active parton (i.e. the one hit by the
photon) k1 and the spectators k2, . . . , kn−1, kn = p −
k1−k2 . . . kn−1 and first perform the integrations over k−

2 ,
. . . , k−

n−1 to put n− 2 spectators on shell while not doing
anything to the active parton. Then we are left with one
active parton and a cluster of spectators, and the situation
for the integration over k−

1 is as above.

3.1.2 Compton scattering

We shall now see that the two-photon process of Fig. 1(b)
involves a new difficulty. Let us take again our toy model

2 In a recent paper [21] this contribution has been rewritten
in terms of the LCWF for the hadron p containing partons with
momenta k and −(k +∆) plus the hadron with momentum p′,
and the (trivial) LCWF to find the hadron with momentum p′

in the hadron p′. It would be interesting to explore this idea in
the context of Compton scattering, but this shall not be done
here.

3 In a frame with ζ = 0 there can be finite contributions of
the type discussed in point 3 if the integrand in the interval
ζ > x > 0 becomes singular for ζ = 0. This happens for the
minus component of the parton current [21,22], which we shall
not use in our applications; the plus component of the current
does not exhibit this phenomenon.

of a hadron with a pointlike coupling to two partons. To
leading order in the electromagnetic coupling the parton-
photon vertex is given by the two diagrams of Fig. 2. Com-
pared to the form factor case we thus have an extra prop-
agator in the overall process, corresponding to a squared
momentum ŝ = (k + q)2 or û = (k − q′)2, so that (17) is
completed by

k− =
(k + q)2 + (k⊥ + q⊥)2

2p+(x− ζ + η)
− q− (18)

in the s-channel and

k− =
(k − q′)2 + (k⊥ − q′

⊥)2

2p+(x− η)
+ q′− (19)

in the u-channel diagram.
In the case 1 > η > ζ > 0 one has the possibilities

listed in Table 1 to pick up propagator poles in the k−-
plane. Proceeding in the same way as in the form factor
case we see that only in the region 1 > x > η we obtain
an expression in terms of the two-parton LCWFs for both
hadrons. In all other regions we have further contributions,
either from a parton attached to one hadron but not the
other (k or k+∆) or not attached to a hadron at all (k+q
or k − q′).

The situation is analogous in other cases than 1 > η >
ζ > 0, and also if there is more than one spectator. Notice
that in general we cannot find a frame where η = ζ = 0 to
solve our problem: if η = 0 then q′2 = 0 implies q′

⊥ = 0,
and if also ζ = 0 then t + Q2 = −2q · q′ = 0 which is a
special kinematical situation.

At this point we look beyond our toy model and re-
member that we want to evaluate soft overlap contribu-
tions in QCD, which involve the soft parts of the hadron
wave functions, not the hard parts that are generated per-
turbatively [4]. We will now see that in certain cases we
can obtain an approximate expression for the soft over-
lap contribution that involves only the LCWFs of the two
hadrons. To this end we first chose a frame with ζ = 0
so as to eliminate the interval ζ > x > 0, as we did for
the form factor. It turns out that with appropriate exter-
nal kinematics the contributions from the poles in ŝ and
û go with a highly virtual parton in at least one of the
two hadrons. Since large parton virtualities are strongly
suppressed in the soft parts of the hadron wave functions
(they constitute their hard parts) we can neglect these
pole contributions, restrict x to the interval from 0 to 1
and only take into account the contribution from the pole
in (p − k)2, which just leads to an expression with two
hadron LCWFs as in the form factor case.

To see when this is the case we write

ŝ+Q2 = x(s+Q2 −m2) + k2 − 2(k⊥ − xp⊥) · q⊥

−η − ζ

x

{
x2m2 − k2 − (k⊥ − xp⊥) · (k⊥ + xp⊥)

}
,

û = x(u−m2) + k2 + 2(k⊥ − xp⊥) · q′
⊥

+
η

x

{
x2m2 − k2 − (k⊥ − xp⊥) · (k⊥ + xp⊥)

}
(20)
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(a)
k

q

k0 = k +�

q0 = q ��

(b)
k

q

k0 = k +�

q0 = q ��

Fig. 2. a s-channel and b u-channel diagram
for quark-photon or antiquark-photon scatter-
ing

Table 1. Possibilities to pick up propagator poles in the k−-integration
for the case 1 > η > ζ > 0

diagram region propagator pole in
s-channel 1 > x > ζ p − k or k, k + ∆, k + q

ζ > x > 0 k, k + q or p − k, k + ∆

0 > x > ζ − η k + q or p − k, k + ∆, k

u-channel 1 > x > η p − k or k, k + ∆, k − q′

η > x > ζ p − k, k − q′ or k, k + ∆

ζ > x > 0 k or p − k, k − q′, k + ∆

and make the hypothesis that the soft hadron wave func-
tions are dominated by intrinsic transverse parton mo-
menta k⊥i satisfying k2

⊥i/xi
<∼Λ2 (this is implemented

in our ansatz for the LCWFs in Sect. 5), where Λ is a
hadronic scale in the GeV region, and by parton virtual-
ities in the range |k2

i |<∼Λ2. From now on we concentrate
on two cases.

Large angle Compton scattering (large s, −t and −u)

We now work in the symmetric frame of Sect. 2.2. Let
us for a moment stick with the case where there is only
one spectator parton; the expressions k̃2

⊥i/x̃i and k̂′ 2
⊥i/x̂

′
i

for this spectator in the initial and final state hadron (cf.
Sect. 2.4) can then be rewritten in terms of the active
parton momenta k and k′. For their sum we obtain

(k⊥ − xp⊥)2

1 − x
+

(k′
⊥ − xp′

⊥)2

1 − x

= (1 − x)∆2
⊥/2 +

2(k⊥ + ∆⊥/2)2

1 − x
<∼Λ2 , (21)

which implies

|1 − x|<∼Λ2/(−t) , |k⊥ − xp⊥|<∼Λ2/
√−t . (22)

In the case of several spectators the argument goes along
the same lines, now summing k̃2

⊥i/x̃i + k̂′ 2
⊥i/x̂

′
i over all

spectators.
We remark in passing that a restriction to intrinsic

transverse momenta k2
⊥i
<∼Λ2 instead of k2

⊥i/xi
<∼Λ2

would not be enough to ensure small parton virtualities in
the hadrons: instead of (21) we would then only have (k⊥−
xp⊥)2 + (k′

⊥ − xp′
⊥)2<∼Λ2, which gives |1 − x|<∼Λ/

√−t
and |k⊥ − xp⊥|<∼Λ, and in particular |k⊥ + ∆⊥/2|<∼Λ.
From k2 − k′2 = 2∆⊥ · (k⊥ + ∆⊥/2) we see that then

at least one of the parton virtualities would be of order
Λ

√−t and not Λ2.
With (20), (22) and (5), (6) we have s ≈ ŝ and u ≈ û

up to corrections of order Λ2 (t±Q2)/t, provided that both
s and −u are large on a hadronic scale.4 This implies that
in order for ŝ or û to have a pole at least one parton must
have a large virtuality or intrinsic transverse momentum,
so that following our above remarks we can neglect these
pole contributions. Note that apart from −t one also needs
−u large: when the latter becomes too small the propaga-
tor û can easily become soft and it is no longer justified
to neglect its pole contribution (which one may relate to
the soft, hadronic part of the final state photon). Similarly
one can see that s must be large, too.

The physical situation clearly is that of a hard photon-
parton scattering and the soft emission and reabsorption
of a parton by the hadron, similar to the familiar handbag
diagram for inclusive deeply inelastic scattering (DIS) or
for DVCS.5 In the hard scattering one can approximate
the parton momenta k, k′ as being on shell, collinear with
their parent hadrons and with light cone fractions x = 1.
This also provides another point of view on neglecting the
ŝ and û pole contributions: approximating k− with the
value for which the partons are on shell in the hard scatter-
ing we have a k−-integral where only the parton lines di-
rectly attached to hadrons provide a k−-dependence. This
is just as in the case of the elastic form factor, and thus
we have the same situation for expressing the amplitude
in terms of LCWFs as described in Sect. 3.1.1.

4 One may admit a two-scale regime Λ2 � −t � Q2 pro-
vided that s and −u are also of order Q2.

5 Note however that in those cases there are factorisation the-
orems stating that the handbag diagrams are dominant when
the hard scale becomes infinitely large. In the present case we
have a less strong situation of factorisation since for infinitely
large −t the hard scattering mechanism of [4] dominates over
the soft overlap or handbag contribution.
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At this point we can also understand why in the con-
ventional hard scattering mechanism [4] (and also in the
modified one of Botts, Li and Sterman [13]) one always
obtains an expression involving hadron LCWFs, irrespec-
tive of the reference frame used. The reason is that in
the corresponding diagrams the parton lines from each
hadron are directly attached to a hard scattering subpro-
cess, where the minus components of their momenta can
be approximated with their values for which the partons
are on shell. The corresponding k−-integration then only
concerns the hadron-parton vertex alone and leads to a
LCWF. In the case of soft overlap diagrams the situation
becomes more complicated because spectator parton lines
are ”shared” by different hadrons, without undergoing a
hard scattering.

Deeply virtual Compton scattering
(small −t, large Q2 and s)

In the kinematical region of DVCS, where −t ∼ Λ2, we
can no longer infer from (21) that x must be close to one.
Furthermore the factors (t±Q2)/(2t) in (5), (6) are large,
and the terms involving q⊥, q′

⊥ and η in (20) can thus be
of order of the large scale,6 so that ŝ or û may be zero even
if the partons are near shell and nearly collinear with their
parent hadrons. Our previous argument to neglect the pole
terms in ŝ and û then no longer works in the frame we have
considered so far. There exist other frames with ζ = 0,
but one can show that η cannot be smaller than in (6) by
solving the minimisation problem for η with an arbitrary
axis defining plus components under the constraint ζ = 0.

We know however from the factorisation theorem of
DVCS [3,23] that in a frame such as the c.m. where the
incident and the scattered hadron move fast to the right
(and where ζ 6= 0), the process factorises into a skewed
parton distribution describing the soft coupling between
partons and hadrons, and a hard photon-parton scattering
calculated with the minus- and transverse components of k
and k′ replaced with zero. This factorisation is not realised
in our symmetric frame of Sect. 2.2, where the hadron
momenta become slow of order

√−t in the DVCS limit.
Using this factorisation in the c.m. we can again ne-

glect the pole contributions from ŝ and û but have now
the problem of the region ζ > x > 0 described in connec-
tion with the form factor. What we will do in this paper is
to use LCWFs to calculate the contribution of the lowest
Fock state components to skewed parton distributions in
the region 1 > x > ζ. We are thus not able to predict
the amplitude of the DVCS process but can give a part
of the nonperturbative input needed to calculate it, which
furthermore is process independent and also occurs e.g. in
exclusive meson production at large Q2 and small t [24].

It should be noted that even if we were able to express
the full DVCS amplitude through the overlap of LCWFs
we could not hope to evaluate the amplitude from the
lowest Fock states only. In the case of the elastic form

6 A more careful discussion is needed in the case where s �
Q2, which we shall not consider here.

factor, where we do have an overlap formula, we know
that all Fock states become important as one goes to low
−t and it seems reasonable to expect the same for DVCS,
where −t is always small by definition. Similarly the usual
parton distributions, where we have an overlap formula in
the full range 0 < x < 1, can be well described by the
first few Fock states down to some finite value of x, but at
some point higher Fock states will become essential. The
same holds a fortiori for skewed parton distributions as we
shall see in Sect. 9.

3.2 Cat’s ears diagrams in Compton scattering

So far we have only considered soft overlap contributions
with only one active parton, which is subsequently hit
by the two photons. As already remarked they have the
topology of handbag diagrams, i.e. they factorise into a
parton-photon scattering and a soft subamplitude with
two hadron and two parton lines, which we want to de-
scribe in terms of hadron LCWFs. There are other overlap
contributions with two active partons, each coupling to
one photon; they have the topology of so called cat’s ears
diagrams. One can see that in the large angle region as
well as for DVCS one cannot avoid large virtualities or in-
trinsic transverse momenta occurring somewhere in these
diagrams, so that we no longer deal with a soft overlap.
Working with soft hadron wave functions one must then
add at least one hard gluon in the diagrams.

That in DVCS cat’s ears diagrams become unimpor-
tant in the large-Q2 limit is part of the factorisation the-
orem for that process. In the large angle region it is inter-
esting to note that the diagrams where there is just one
hard gluon exchanged between the two active partons con-
sist of a hard scattering subprocess involving two parton
lines (corresponding to the diagrams for Compton scat-
tering off a meson in the hard scattering mechanism of
[4]), and a number of spectator partons which as in the
soft overlap (handbag) diagrams must be wee partons. It
is reasonable to assume that such “hybrid” diagrams give
contributions to the amplitude whose order of magnitude
is between the pure soft overlap and the pure hard scat-
tering contributions: compared with the latter they have
less hard gluons (and thus hard propagators and coupling
constants), but in contrast to the pure soft overlap dia-
grams they require N − 2 instead of N − 1 wee partons in
an N -particle Fock state, which is less restrictive for the
hadron wave functions.

3.3 Soft overlap contributions to other processes

Having discussed in detail the conditions necessary to ex-
press soft overlap contributions in terms of LCWFs for
spacelike elastic form factors and for Compton scattering
we wish to make some remarks on other processes:

3.3.1 Meson production γ∗p → Mp

Let us first see what happens if in the overlap diagrams for
Compton scattering we replace the outgoing photon with
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a meson M = ρ, φ, π, K, . . . , and the pointlike photon-
quark coupling with the qq̄ Bethe-Salpeter wave function
of M . In the discussion of our toy model we have seen that
the loop integration over k− gives a sum over residues,
where each term corresponds to a simple pole in the k−-
plane and can be written as the product of two LCWFs (of
the two external particles that ”share” the parton which is
on its mass pole). This is not the structure we would need
for an expression in terms of three LCWFs, two for the
incident and scattered proton and one for the meson. If
and how such a structure can be obtained requires further
investigation which goes beyond the scope of this paper.

From our discussion of Compton scattering it is how-
ever clear that in the region of large s, −t, −u there is no
soft overlap, because if the partons in the protons are all
to be soft then there is a parton with large virtuality ŝ or
û, which now couples to the meson.

In the region of small −t but large Q2 and s the situa-
tion is different. First we remember that in this case it has
been shown [24] that for longitudinal photon polarisation
and in the large-Q2 limit the process factorises into a soft
amplitude involving the two protons and two partons, the
soft transition from a qq̄-pair to the meson, and a hard
photon-parton scattering with at least one hard gluon ex-
change. A soft overlap contribution competing with this
mechanism is possible when the quark line that directly
goes from the meson to the soft proton amplitude is a wee
parton: then one can take out the gluon from the hard
scattering diagrams without any parton line going far off
shell.7 As mentioned above it is not clear whether such
contributions can be written in terms of LCWFs for the
protons and the meson. Likewise it remains to be investi-
gated whether it can be expressed in terms of the LCWF of
the meson and a skewed parton distribution in the proton,
the latter being obtained from the parton-proton ampli-
tude by an integration over k− in a similar way as LCWFs
are obtained from Bethe-Salpeter wave functions [25].

3.3.2 Timelike processes

Crossing relates the timelike (γ∗ → pp̄) to the spacelike
form factor (γ∗p → p), and the production of pp̄ in a two-
photon collision to Compton scattering; the diagrams for
the timelike processes are obtained from those in Fig. 1 by
a rotation of 90◦ counterclockwise. Using our toy model
one easily sees that like their spacelike counterparts these
processes admit soft overlap contributions. They can how-
ever not be expressed in terms of LCWFs: the parton line
shared by the proton and antiproton cannot correspond to
an incoming parton for both p and p̄ as it would have to be
in LCWFs, except for the the point where its plus momen-
tum is strictly zero. This holds in any reference frame so

7 Such end point configurations are indeed the reason why
factorisation cannot be established in the case of transverse
photon polarisation.

that knowledge of the LCWFs is not sufficient to evaluate
the soft overlap contributions to these processes.8

4 Large angle Compton scattering
with the handbag

4.1 Calculation of the handbag diagrams

The calculation of the handbag diagrams for real or vir-
tual Compton scattering at large s, −t and −u can be
done using the methods that are well known for usual
DIS and for DVCS. At some points it presents however
additional complications which we shall now discuss. For
simplicity we work in the frame of Sect. 2.2 where ζ = 0,
although our derivation can be done in other frames as
well. Our starting point is the expression of the Compton
amplitude in terms of a soft proton matrix element and a
hard parton-photon scattering:

A =
∑

a

(eea)2
∫

d4k θ(k+)
∫

d4z

(2π)4
ei k·z

× [〈p′|T ψaα(0)ψaβ(z) |p〉Hαβ(k′, k)

+ 〈p′|T ψaα(z)ψaβ(0) |p〉Hαβ(−k,−k′)
]
, (23)

where

Hαβ(k′, k) =
(
ε′∗ · γ (k + q) · γ

(k + q)2 + iε
ε · γ

+ ε · γ (k′ − q) · γ
(k′ − q)2 + iε

ε′∗ · γ
)

αβ

(24)

is the tree level expression for the hard scattering, with
polarisation vectors ε and ε′ for the incoming and outgoing
photon. The sum is over quark flavours a, ea being the
electric charge of quark a in units of the positron charge e.
The first term in (23) corresponds to the case where the
incoming parton k in the hard subprocess is a quark, the
second term corresponds to an incoming antiquark. For
ease of writing we do not display the spin labels for the
proton states here and in the following.

Using that the photon-parton scattering is dominated
by a large scale we now neglect the variation of the trans-
verse and minus components of k and k′ in H, where we
replace them with momentum vectors that are on shell
and lie in the scattering plane, namely with

k̄ =
[
k+ , − t/4

2k+ , −1
2

∆⊥

]
,

k̄′ =
[
k+ , − t/4

2k+ ,
1
2

∆⊥

]
, (25)

respectively. The integrations over k− and k⊥ in (23) can
then be performed explicitly, leaving us with an integral

8 Again it might be possible to find an expression of the
overlap along the lines mentioned in our footnote 2, but this
will not be pursued here.
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∫
dk+

∫
dz− and forcing the relative distance of fields in

the matrix elements on the light cone, z = [ 0, z−,0⊥]. Af-
ter this the time ordering of the fields can also be dropped
[25].

At this point one might be tempted to proceed as in
standard DIS (or in DVCS) and decomposeH on the Dirac
matrices γρ and γργ5. This leads to the Fourier transforms
of the nonlocal matrix elements 〈p′|ψa(0) γρ ψa(z) |p〉,
〈p′|ψa(0) γργ5 ψa(z) |p〉, and the corresponding ones with
the arguments 0 and z interchanged. In DIS or DVCS,
where only the plus components of the proton momenta
are large, one has that only the plus components of the
currents give a leading contribution in the limit of large
Q2. Now however we have a large scattering angle, and
the proton momenta have large plus, minus and transverse
components, so that it does not follow from kinematic con-
siderations that the plus component of, say,

∫
dz− ei k+z−

〈p′|ψa(0) γρ ψa(z) |p〉 is large compared to its minus or
transverse components and thus dominates in the Comp-
ton amplitude.

To show that the plus components indeed dominate
also in large angle scattering we use that the proton-
parton amplitudes described by the soft matrix elements
can be written as the amplitude for a proton with mo-
mentum p emitting the active parton with momentum k
and a number of on-shell spectators times the correspond-
ing conjugated amplitude for momenta p′ and k′, summed
over all spectator configurations; this just corresponds to
inserting a complete set of intermediate states between the
quark and antiquark fields in the matrix elements. We note
that for small k2, k′2 and small intrinsic transverse parton
momenta, k2

⊥i/xi
<∼Λ2, one cannot form large kinematical

invariants at the hadron-parton vertices.9
For each of the proton-parton vertices we now go to a

frame where the momentum k̄ or k̄′ has a zero transverse
(and thus also a zero minus) component, performing a
transverse boost as described in Sect. 2.4. Considering for
definiteness the case where the parton coming out of the
proton is a quark we write in this frame

ψ(z) =
1
2
γ−γ+ ψ(z) +

1
2
γ+γ− ψ(z)

=
1

2k+

∑
λ

[
u(k̄, λ)

(
ū(k̄, λ)γ+ψ(z)

)
+ γ+u(k̄, λ)

(
ū(k̄, λ)ψ(z)

)]
(26)

with a sum over helicities λ/2 = ±1/2. We can now argue
that in the matrix element of (26) between the incoming
proton and the spectator system the term with ūγ+ψ(z)
dominates over the one with ūψ(z) because at the vertex
we have a large plus component but no large invariant,
and thus retain only the first term in the decomposition
(26).10 Now we use that the boost (13) to the frame where
k̄ has vanishing transverse and minus components leaves

9 The situation is special for small momentum fraction x of
the active parton, when Fock states with large N are impor-
tant; a case we do not consider here.
10 We note that this corresponds to the “good” component of
the Dirac field in the context of light cone quantisation [18].

the plus component of any vector unchanged so that (26)
also holds in the overall symmetric frame of Sect. 2.2. Re-
peating our argument for the antiquark field we arrive at
the replacement

ψα(0)ψβ(z) →(
1

2k+

)2 ∑
λ,λ′

(
ψ(0)γ+u(k̄′, λ′)

) (
ū(k̄, λ)γ+ψ(z)

)
× ūα(k̄′, λ′)uβ(k̄, λ) (27)

and an analogous one involving antiquark spinors for
ψα(z)ψα′(0). In (23) the hard scattering kernels are then
multiplied with the spinors for on-shell (anti)quarks, which
guarantees electromagnetic gauge invariance of our result.
Note that the full expression (23) need not be gauge in-
variant since the handbag diagrams are not the complete
set of diagrams for our process.

To further simplify the hadronic matrix elements we
use that the hard scattering, where of course we neglect
quark masses, conserves the parton helicity: λ′ = λ. In a
suitable convention for massless spinors one has u(k̄, λ) =
−v(k̄,−λ) and arg[ū(k̄′, λ)γ+u(k̄, λ)] = 1 for any on-shell
momenta k̄, k̄′, so that we can multiply (27) with

1 =
ū(k̄′, λ)γ+u(k̄, λ)

2k+ . (28)

With u(k̄, λ) ū(k̄, λ) = k̄ · γ (1 − λγ5)/2 and analogous
expressions for k̄′ and for antiquark spinors we obtain after
a little algebra

A =
∑

a

(eea)2
∫

dk+ θ(k+)
∫

dz−

2π
ei k+z− 1

2k+

∑
λ

×
[
〈p′|ψa(0) γ+ 1 + λγ5

2
ψa(z−) |p〉

× ū(k̄′, λ)H(k̄′, k̄)u(k̄, λ)

+ 〈p′|ψa(z−) γ+ 1 − λγ5

2
ψa(0) |p〉

× v̄(k̄, λ)H(−k̄,−k̄′)v(k̄′, λ)
]
, (29)

where we write ψ(z−) as a shorthand notation for ψ(z)
with z = [ 0, z−,0⊥]. We thus find that the plus compo-
nent of the nonlocal currents dominates as we have antici-
pated in our footnote 3, and that the operators in the ma-
trix elements are in fact the same as those of the leading-
twist parton distributions occurring in DIS or DVCS.

We now must discuss what to take for k+ in the hard
scattering. As shown in Sect. 3.1.2 the requirement to have
no hard partons directly coupling to the protons forces the
active partons k and k′ to have small intrinsic transverse
momenta in their parent hadrons and a momentum frac-
tion x close to one when −t is large. This corresponds to
the approximation (25) with k+ = p+ we will make in
the hard scattering factors, i.e. the expressions after the
proton matrix elements in (29). Some degree of arbitrari-
ness is associated with the global factor 1/(2k+) in (29),
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which has its origin in (26), (27) and for which we choose
to keep k+ = xp+. Admittedly there is no clear-cut way
to associate it to either the hard scattering, where we set
x = 1, or the soft matrix elements, where setting x = 1
would not even make sense since for x strictly at its end
point our proton LCWFs are zero.

Making use of the charge conjugation properties of
Dirac matrices and spinors in order to rewrite the term
corresponding to antiquark-photon scattering we obtain
our final expression for the handbag diagrams in large an-
gle Compton scattering,

A =
1
4

∑
λ

ū(k̄′, λ)H(k̄′, k̄)u(k̄, λ)

∑
a

(eea)2
∫ 1

0

dx
x

∫
dz−

2π
ei xp+z−

(30)

× [〈p′|ψa(0) γ+ ψa(z−) − ψa(z−) γ+ ψa(0) |p〉
+ λ 〈p′|ψa(0) γ+γ5 ψa(z−) + ψa(z−) γ+γ5 ψa(0) |p〉] ,

with (24) and with (25) for k+ = p+. We note that the
Fourier transformed matrix elements in (30) are skewed
parton distributions at ζ = 0 and large −t, as was already
remarked in [17]. In (30) we have incorporated their sup-
port property x < 1, cf. [3,25]. Following Radyushkin [17]
we introduce a form factor decomposition∑

a

e2a

∫ 1

0

dx
x
p+

∫
dz−

2π
ei xp+z−

× 〈p′|ψa(0) γ+ ψa(z−) − ψa(z−) γ+ ψa(0) |p〉
= RV (t) ū(p′) γ+u(p) +RT (t)

i

2m
ū(p′)σ+ν∆ν u(p) ,∑

a

e2a

∫ 1

0

dx
x
p+

∫
dz−

2π
ei xp+z−

× 〈p′|ψa(0) γ+γ5 ψa(z−) + ψa(z−) γ+γ5 ψa(0) |p〉
= RA(t) ū(p′) γ+γ5u(p) +RP (t)

∆+

2m
ū(p′) γ5 u(p) (31)

for the x-integrals over these skewed distributions. RV ,
RT , RA and RP are new form factors specific to Compton
scattering; note that RP does not contribute to the Comp-
ton amplitude in our symmetric frame with ∆+ = 0.

One may ask how to improve on the approximation
(25) with k+ = p+ when calculating the hard scattering.
There will be corrections due to the facts that in the hard
scattering

1. x is not strictly one,
2. the intrinsic transverse momenta of the partons k, k′

are nonzero, and
3. the virtualities k2, k′2 are not zero.

The order of magnitude of all these corrections is con-
trolled by the parameter Λ2/(−t) as discussed in
Sect. 3.1.2. Note that in order to express the amplitude
in terms of LCWFs or of the light cone matrix elements
in (29) it was essential to neglect the k−-dependence of
the hard scattering. The inclusion of off-shell corrections

(point 1) would thus necessitate an extension of the frame-
work we are using here. We emphasise that the on-shell
condition in the hard scattering is our guarantee to obtain
a gauge invariant result; “exactly” evaluating the hand-
bag diagrams would only have a limited sense since a
part of the corrections to (25) will break gauge invari-
ance and be cancelled by other diagrams. Furthermore
points 1, 2 and 3 are kinematically related: from k2−k′2 =
2∆⊥ · (k⊥ + ∆⊥/2) in our symmetric frame we see that
if we insist on taking on-shell partons in the hard scatter-
ing then we must fix k⊥ = −∆⊥/2 (as we did in (25)),
which forbids us to evaluate the effect from the variation
of k⊥ in the hard scattering kernel. We also see that for
x 6= 1 the choice k⊥ = −∆⊥/2 no longer corresponds
to zero intrinsic transverse momenta k⊥ + x∆⊥/2 and
k⊥ + (2 − x)∆⊥/2 of k and k′ in their parent hadrons.

Compared with fixing k⊥ the approximation x = 1
in the hard scattering presents the particularity that x is
taken at its kinematical end point; the soft part of the
process can only select x around some value smaller than
1. Moreover, we find that with our ansatz for the LCWFs
(Sect. 5) both the x-integrals in (31) and the correspond-
ing one for the elastic form factor are dominated by val-
ues of x not very close to 1 for −t between, say, 5 and
20 GeV2, with the peaks of the integrands being of order
0.45 to 0.75. The reason is that with our wave functions
the end point x = 1 is rather strongly suppressed in the
integrands of (68), (73) by a third power (1−x)3, cf. (58),
(61), (66), and that the suppression of large k2

⊥/x in the
LCWFs is only effective for values clearly larger than 1
GeV2. It turns out that the factor 1/x in (31) does not
significantly shift the values of x where the integrand has
its maximum, but rather increases the height of the peak.

One might think of only dropping the approximation
x = 1 then, but allowing x to be different from 1 in the
hard scattering would lead to serious problems: in the case
of a real incident photon for instance one easily calculates
that for k⊥ = −∆⊥/2 and x = η = (

√
s − √−u)/(√s +√−u) one has û = 0. It would however be mistaken to

treat this as a pole in the hard scattering (24) which gives
an imaginary part to the scattering amplitude. We must
remember from our discussion of the k−-integration in
Sect. 3.1.2 that we have already neglected certain terms
where û has a pole. Retaining others by allowing x to range
from 0 to 1 in the hard scattering is then inconsistent and
would give misleading results. What happens in this ex-
ample is that the factorisation into a hard scattering and
a soft proton matrix element breaks down for x not suffi-
ciently large. Keeping x = 1 fixed in ū(k̄′)H(k̄′, k̄)u(k̄) is
thus related to our approximation of factorising the soft
overlap contribution to Compton scattering into a hard
parton-photon scattering and a soft proton matrix ele-
ment.

The fact that in our numerical applications the hadron
wave functions are probed at intermediate rather than
very large x means on one hand that our results are not
too sensitive to the precise behaviour of the LCWFs near
x = 1, and also not to a possible Sudakov suppression (cf.
[16] for comments on these points in the case of the elastic
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form factor). On the other hand our approximation x = 1
in the hard scattering of the Compton process has only a
limited accuracy for −t not very large.

We finally also neglect the proton mass when relating
ŝ and û to the external variables. Comparing (4) with (25)
at x = 1 we see that this means k̄ ≈ p and k̄′ ≈ p′ so that
we have ŝ ≈ s and û ≈ u. Corrections to this will be of
relative order m2/(−t) and thus of the same size as other
terms we do not control.

4.2 Proton spin

We have already remarked that the hard scattering sub-
process does not change the helicity of the active parton
(the same holds for the quark-photon coupling in the elas-
tic form factor). As the helicities of the spectators do not
change either a change in the proton helicity implies that
for at least one of the incident or scattered proton the
parton helicities do not add up to the hadron helicity. In
other words the calculation of proton spin flip amplitudes
requires to take into account LCWFs with nonzero orbital
angular momentum L3 of the partons in a detailed man-
ner;11 this will not be attempted in the present work. For
the lowest, three quark Fock state we only take a wave
function with zero L3, which has been constrained by sev-
eral physical observables in [16], and do not endeavour to
model wave functions with L3 6= 0. For higher Fock states,
which for sufficiently large −t provide only a correction to
the three-quark contribution in Compton scattering and
the elastic form factor, we will not specify how the orbital
angular momenta between the various partons are explic-
itly coupled; describing such detailed effects is not within
the scope of this paper.

Due to its finite mass the helicity of a proton depends
of course on the choice of reference frame. Taking the in-
cident proton for definiteness we can express this depen-
dence in a covariant way using its spin four-vector s. In
the hadron frame of Sect. 2.4, where p has zero transverse
momentum, the spin vector for a state of definite helicity
is a linear combination of p and the vector v′ = [ 0, 1,0⊥],
which is unchanged by the boost to the overall symmetric
frame. This choice of spin quantisation axis is natural in
our context of LCWFs, which are defined with respect to
the same vector v′ through the integration over the minus
components of parton momenta. A corresponding argu-
ment holds for the scattered proton, with the same vector
v′. We find that in our symmetric frame with ζ = 0 the
helicity flip amplitudes are only due to RT , which we will
therefore not be able to model here, whereas the helicity
conserving ones go with RV and RA. The same holds for
the elastic form factors: F2 changes helicity and F1 does
not, and we will only calculate F1.

We know from experiment that in the transition γ∗p →
p proton helicity flip becomes small compared with no flip
for large enough −t, so that neglecting the former can
be justified as an approximation. The measured difference

11 In this respect one has the same situation as in the hard
scattering formalism [26].

between the Dirac form factor F1 and the magnetic Sachs
form factor GM = F1 +F2 at a given −t shows the degree
of accuracy of neglecting spin flip contributions, and it is
reasonable to assume that the situation will be similar for
the new form factors (31).

4.3 The hard scattering

We now give the hard scattering amplitudes

Hλ, µµ′ = ū(k̄′, λ)H(k̄′, k̄)u(k̄, λ) (32)

where µ and µ′ respectively denote the helicity of the ini-
tial and final state photon. For virtual Compton scatter-
ing the initial photon helicity depends on the reference
frame and we choose to define it in the photon-proton
c.m., i.e with respect to the p-q axis: our symmetric ζ = 0
frame is adapted to discuss the physics of our reaction
mechanism, but γ∗-polarisations defined in the c.m. are
well suited for the consideration of azimuthal asymme-
tries we shall briefly mention below, apart from being
a standard choice that facilitates comparison with other
work. With our approximation k̄ ≈ p, k̄′ ≈ p′ the photon-
proton c.m. is identical to the c.m. of the hard subprocess
q(k̄) γ∗(q) → q(k̄′) γ(q′). In our phase convention, where
arg[ū(k̄′, λ)γ+u(k̄, λ)] = 1, we explicitly find

H+, ++ = 2
√

s

−u
s+Q2

s
, H+, −− = 2

√−u
s

s

s+Q2 ,

H+, +− = 2
Q2

s+Q2

t√−su , H+, −+ = 0 ,

H+, 0− = −2
Q

s+Q2

√−2t , H+, 0+ = 0 , (33)

with the kernels for λ = −1 given by parity invariance as
Hλ, µµ′ = (−1)µ−µ′H−λ, −µ−µ′ .

With (30) and (33) we have all necessary ingredients
to calculate the cross section in terms of the form fac-
tors RV , RA (and RT which we will neglect in this work).
We present a numerical study of real Compton scatter-
ing in Sect. 8. Virtual Compton scattering is measured in
electroproduction, ep → epγ, where it interferes with the
Bethe-Heitler process, i.e. the emission of the final state
photon from the lepton, and its detailed study shall not
be attempted here. The results in the handbag mechanism
have however some general features, both for real and vir-
tual initial photons, which we discuss now.

The first point is that the photon-proton amplitude
comes out as purely real: the form factors RV , RA, RT are
real due to time reversal invariance, and the hard scatter-
ing kernel does not have an imaginary part because the
corresponding diagrams cannot be cut with ŝ and û be-
ing far off-shell; such cuts only arise at the level of αs-
corrections to the photon-parton scattering. In the hard
scattering mechanism [4] the situation is very different:
there one has cuts already to leading order in αs, which
lead to nontrivial phases in the scattering amplitude. This
may offer a valuable tool to distinguish experimentally
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which reaction mechanism is at work: in ep → epγ with
longitudinally polarised lepton beams the beam polarisa-
tion asymmetry is proportional to the imaginary parts of
the γ∗p → γp helicity amplitudes, with the Bethe-Heitler
amplitude being purely real. In the handbag mechanism
this polarisation asymmetry is then predicted to be small,
arising only at the level of loop corrections, while in the
hard scattering mechanism it can have a substantial value.
This was for instance shown in [27], where virtual Comp-
ton scattering was studied within the hard scattering ap-
proximation using a quark-diquark wave function for the
proton.

A second remarkable feature of (33) is the dependence
on the photon helicities: transitions between positive and
negative helicities are forbidden for real photons and sup-
pressed by Q2/(s + Q2) if the photon virtuality is small
compared with s.12 This helicity selection rule could be
tested in real Compton scattering with linearly polarised
incident photons: it leads to the absence of a dependence
of the cross section on the azimuth Φ between the plane of
photon polarisation and the scattering plane; nonzero pho-
ton helicity flip amplitudes will in general give a cos 2Φ-
contribution to the differential cross section. For finite but
not very large Q2 the situation is more complicated, be-
cause the helicity flip amplitude is only suppressed and
not zero, and because the process interferes with Bethe-
Heitler.

5 The Fock state wave functions

The valence Fock state of the nucleon has been investi-
gated in some detail in [16]. The explicit form of the cor-
responding wave function has been extracted from a fit
to the valence quark distribution functions derived in [28]
and to the Dirac form factor of the proton assuming dom-
inance of the soft overlap contribution. This is just the
physics we are interested in here; therefore we take over
the results of [16] as a starting point. The wave function
proposed in [16] has also been shown to work successfully
for J/ψ decays into proton-antiproton pairs, a process that
is well under control of perturbative physics in contrast
to, for instance, the form factors in the experimentally ac-
cessible region of momentum transfer. In the subsequent
sections we will test that wave function in further observ-
ables, namely in Compton scattering and in the polarised
parton distributions. We will even go a step further than
in [16] and explore the next two higher Fock states con-
sisting of four and five partons in order to determine their
gross features. Moreover, we are going to investigate the
global effect of all Fock states in an approximate way. As
has been shown recently by Radyushkin [17], one can then
directly relate the parton distributions controlling deeply
inelastic lepton-nucleon scattering with exclusive observ-
ables such as form factors or the Compton cross section,
without assuming an explicit form of the distribution am-
plitudes.

12 Whether this still holds at the level of αs-corrections would
need further investigation.

For the reader’s convenience we will start with a brief
description of the properties of the LCWF for the proton’s
valence Fock state derived in [16]. According to Sotiropou-
los and Sterman [29] the valence Fock state of a proton
with momentum p and positive helicity can be written as

|P, p,+; qqq〉 =
∫

[dx]3[d2k⊥]3 (34){
Ψ123M+−+ + Ψ213M−++ −

(
Ψ132 + Ψ231

)
M++−

}
with plane wave exponentials and the colour wave func-
tions omitted here and in the following. The integration
measures in (35) are defined by

[dx]N ≡
N∏

i=1

dxi δ(1 −
∑

i

xi) ,

[d2k⊥]N ≡ 1
(16π3)N−1

N∏
i=1

d2k⊥i δ
(2)(

∑
i

k⊥i) . (35)

The quark i is characterised by its plus momentum k+
i =

xi p
+, its transverse momentum k⊥i with respect to the

proton’s momentum, and by its helicity λi. A three-quark
state is then given by

Mλ1λ2λ3 =
1√

x1x2x3
|u;x1p

+,k⊥1, λ1〉

×|u;x2p
+,k⊥2, λ2〉 |d;x3p

+,k⊥3, λ3〉 (36)

with a normalisation

〈q;x′
ip

+,k′
⊥i, λ

′
i | q;xip

+,k⊥i, λi〉 (37)

= 2xi p
+(2π)3 δλ′

i
λ

i
δ(x′

ip
+ − xip

+) δ(k′
⊥i − k⊥i) .

A neutron state is obtained by the exchange u ↔ d.
We only consider the part of the wave function with

zero orbital angular momentum L3 along the 3-axis, so
that the quark helicities sum up to the proton’s helicity.
As has been demonstrated in [30] (35) is the most general
ansatz for the L3 = 0 projection of the three-quark proton
wave function: From the permutation symmetry between
the two u-quarks and from the requirement that the three
quarks have to be coupled in an isospin 1/2 state it follows
that there is only one independent scalar wave function,
which for convenience is parametrised as

Ψ123(xi,k⊥i) ≡ Ψ(x1, x2, x3;k⊥1,k⊥2,k⊥3)

=
f3

8
√

6
φ123(xi)Ω3(xi,k⊥i) (38)

with the normalisation conditions∫
[dx]3 φ123(xi) = 1,

∫
[d2k⊥]N ΩN (xi,k⊥i) = 1. (39)

f3 plays the role of the nucleon wave function at the ori-
gin of coordinate space and φ123(xi) ≡ φ(x1, x2, x3) is the
nucleon’s valence distribution amplitude. Both quantities
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depend on a factorisation scale µF and are subject to evo-
lution. Expanding φ123(xi) as

φ123(xi, µF ) = φAS(xi)
[
1 +B1(µF ) φ̃1

123(xi) (40)

+B2(µF ) φ̃2
123(xi) + . . .

]
,

where φAS(xi) = 120x1x2x3 is the asymptotic distribu-
tion amplitude and φ̃1

123(xi), φ̃2
123(xi), etc. are the eigen-

functions of the evolution kernel [4], one has

f3(µF ) = f3(µ0)
(

ln(µ0/ΛQCD)
ln(µF /ΛQCD)

)2/(3β0)

,

Bn(µF ) = Bn(µ0)
(

ln(µ0/ΛQCD)
ln(µF /ΛQCD)

)γ̃n/β0

(41)

with β0 ≡ 11 − 2nf/3, γ̃1 = 20/9, γ̃2 = 8/3, etc. In [16]
it has been shown that it is sufficient to retain only the
first two terms in the expansion (40). They are taken as
B1(µ0) = 3/4 and B2(µ0) = 1/4 at a factorisation scale
of µ0 = 1 GeV. At this scale one then has the simple form

φ123(xi) = 60x1x2x3 (1 + 3x1) (42)

for the valence distribution amplitude.
When calculating the overlap contributions to the elas-

tic form factor and to large angle Compton scattering in
Sect. 7 and 8 we will use the distribution amplitude at a
factorisation scale µ2

F = −t given by the momentum trans-
fer to the nucleon.13 The parton distributions in Sect. 6
and 9 will be calculated and compared with the parametri-
sations from global fits at our starting scale µ2

0 = 1 GeV2.
The transverse momentum dependence of the wave

function is contained in the function ΩN . A simple sym-
metric Gaussian parametrisation,

ΩN (xi,k⊥i) =
(16π2a2

N )N−1

x1x2 . . . xN
exp

[
−a2

N

N∑
i=1

k2
⊥i

xi

]
, (43)

suffices and meets various theoretical requirements, see
for instance [5,31,32] and our remark following (22). This
ansatz keeps the model simple and allows one to carry
through the k⊥-integrations analytically. Note that the
ansatz (38), (43) represents a soft wave function, i.e. the
full wave function where the perturbative tail with its
power-like decrease is removed [4]. Integrating ΩN in (39)
to infinity instead of to a cut-off scale given by the hard
scale in a process introduces only a small negligible error.

The values of the normalisation f3 and the transverse
size parameter a3 have been determined in [16] as

f3 = 6.64 · 10−3 GeV2 , a3 = 0.75 GeV−1 (44)

at the scale of reference µF = µ0. With these parameters
the valence Fock state wave function has a value of 0.17 for
its probability and a value of 411 MeV for the rms trans-
verse momentum. The valence Fock state thus appears to
13 For the higher Fock state LCWFs to be discussed below
the evolution will be neglected.

be rather compact, with a radius of only about a half of
the charge radius. For further discussion of the properties
of the valence Fock state wave function see [16].

With the valence Fock state fully specified we can now
turn to the higher ones. Explicitly we only consider the
Fock states with an additional gluon (N = 4) and with
an additional sea quark-antiquark pair (N = 5). Due to
parity conservation both require one unit of orbital angu-
lar momentum. One therefore encounters many different
possibilities of coupling the various partons in a nucleon,
each coming with a new wave function. It seems plausible
to assume that the effect of the orbital angular momen-
tum is averaged out in the sum over all different coupling
possibilities.14

With this proviso in mind we take

|P, p,+; qqqg〉 =
∫

[dx]4[d2k⊥]4 Ψ1234(xi,k⊥i)

× [M++− − M+−+]
1√
x4

| g;x4p
+,k⊥4, λ4〉 (45)

as a representative of allN = 4 Fock states, with the gluon
state | g;x4p

+,k⊥4, λ4〉 normalised as in (37) and

Ψ1234(xi,k⊥i) =
f4

8
√

2
φ1234(xi)Ω4(xi,k⊥i) . (46)

For the distribution amplitude of this Fock state we take
(at the scale µ0)

φ1234(xi) =
9!
30
x1x2x3x

2
4 (1 + 3x1) , (47)

i.e. the distribution amplitude has the asymptotic form
multiplied by an asymmetry factor of the same type as
in the distribution amplitude for N = 3. The spin-isospin
coupling of the valence quarks requires a distribution am-
plitude that is symmetric under the exchange 2 ↔ 3. The
gluon is supposed to couple with the orbital angular mo-
mentum in a spin zero state. Thus the ansatz (45) satis-
fies the minimal requirement that the partons of this Fock
state are coupled in a spin-isospin 1/2 state.

For the N = 5 Fock state we assume a sea that is
colourless, SU(3) flavour symmetric and coupled to total
spin zero.15 The generalisation to a more complicated sea
is straightforward, requiring flavour-dependent wave func-
tions which may also have additional asymmetries in their

14 In principle there is no difficulty in treating all possibilities
explicitly. Each of them is described by an appropriate covari-
ant spin wave function [33,34] that is proportional to K · γ,
where Kµ is the relative momentum of two clusters of partons.
These K · γ-terms, representing the orbital angular momen-
tum between the two clusters, give rise to an additional factor
∼ K′

µ Kµ in the expressions for observables like the overlap
integral for the nucleon form factor.
15 The N = 5 Fock state with two gluons in it is discarded
since its contribution to physical quantities is highly suppressed
in the kinematical region of interest, cf. our remark after (62)
below. If in the following we talk about higher Fock states (N >
5), this particular Fock state is understood to be included.
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xi -dependence, but in order to keep the model simple we
refrain from introducing such wave functions. With our
simple ansatz the valence quarks are in a totally symmet-
ric state in flavour-spin-momentum-space, just as the va-
lence Fock state itself, and the valence sector of the N = 5
Fock state therefore exhibits the same structure as (35).
Assuming its wave function to equal that of the valence
Fock state we make the ansatz

|P, p,+; qqq qq̄〉 =
∫

[dx]5[d2k⊥]5{
Ψ12345 M+−+ + Ψ21345 M−++

−
(
Ψ13245 + Ψ23145

)
M++−

}
(48)

×
∑

q=u,d,s

1√
x4x5

{
| q;x4p

+,k⊥4,+〉 | q̄;x5p
+,k⊥5,−〉

− | q;x4p
+,k⊥4,−〉 | q̄;x5p

+,k⊥5,+〉
}

with

Ψ12345(xi,k⊥i) =
f5
48

φ12345(xi)Ω5(xi,k⊥i) (49)

for the wave function and

φ12345(xi) =
10!
16

x1x2x3x4x5 (1 + 3x1) (50)

for the distribution amplitude at scale µ0. The symmetri-
sation between the sea and valence quarks required by the
Pauli principle is ignored here. We argue that it cannot
play a major role because of the fairly large spatial sep-
arations between sea and valence quarks: the sea quarks
have to build up the full charge radius of the nucleon while
the valence quarks form a compact core.

Admittedly our parametrisations of the higher Fock
states are oversimplified. For the physical processes and in
the kinematical region of interest here they give however
only small contributions compared with the valence Fock
state, and to investigate these corrections we deem our
ansatz to be sufficiently accurate.

We finally give an integral which will appear in our
overlap formulae, namely

IN (xi, ζ,∆2
⊥) =

∫
[d2k⊥]N ΩN (x′

i,k
′
⊥i)ΩN (xi,k⊥i)

(51)
where the relation between the primed and unprimed vari-
ables is given by (16) and for ζ = 0 also by (15). An ap-
propriate tilde, hat or breve upon the variables xi,k⊥i

is understood depending on the case. For our Gaussian
k⊥-dependence the integral (51) evaluates to

IN (xi, ζ,∆2
⊥) =

ρN

x′
1 . . . x

′
N

ΥN (xj , ζ;∆2
⊥) , (52)

where

ΥN (xj , ζ;∆2
⊥) =

(
2

2 − ζ

)N−2 2(xj − ζ)
(xj − ζ) + xj(1 − ζ)2

× exp
[ − a2

N ∆2
⊥ (1 − xj)

(xj − ζ) + xj(1 − ζ)2

]
(53)

and
ρN = (8π2a2

N )N−1 . (54)

Notice that IN is a function of all momentum fractions xi

whereas ΥN only depends on the fraction xj of the active
quark.

Turning to a more generic notation we have that each
Fock state is described by a sum of terms, each with its
own momentum space wave function ΨNβ , where β la-
bels different spin-flavour combinations of the partons. On
the basis of this notation the Fock state probabilities are
given by PN ≡ ∑

β

∫
[dx]N [d2k⊥]N |ΨNβ(xi,k⊥i)|2. For

our parametrisations we have

P3 =
435
224

ρ3f
2
3 , P4 =

27972
275

ρ4f
2
4 ,

P5 =
685125

352
ρ5f

2
5 ,

(55)

and with (44) we obtain P3 = 0.17 as already mentioned
above.

6 Parton distributions

As shown by Brodsky and Lepage [4] the contribution of
an N -particle Fock state to the distribution function for
a parton of type a in the proton is generically given by

q(N)
a (x) =

∑
j

∑
β

∫
[dx]N [d2k⊥]N

δ(x− xj) |ΨNβ(xi,k⊥i)|2 (56)

where the sum j runs over all partons of type a. Sum-
mation over all Fock states leads to the full distribution
functions

qa(x) =
∑
N

q(N)
a (x) . (57)

Note that in our notation qa stands for the distributions
of quarks, antiquarks or gluons. From the wave functions
defined in Sect. 5 and with the help of (52) for ζ = 0 and
∆⊥ = 0 one easily finds the individual contributions to
the distribution functions from the N = 3, 4, 5 Fock states
as a function of the parton momentum fraction x:

q(N)
a (x) = b(N)

a PN xna (1 − x)ma(N) (58)

×
[
1 + c(N)

a (1 − x) + d(N)
a (1 − x)2

]
,

where the coefficients b(N)
a , c(N)

a and d(N)
a are compiled in

Table 2.
As usual we define a valence quark distribution by

q(N)
v (x) ≡ q(N)(x)−q̄(N)(x) for q = u,d. The sea is flavour

symmetric in our simple model , hence

u(5)(x) = d(5)(x) = s(5)(x) = s(5)(x) . (59)

With our particular ansatz (48), (50) we also have

d(5)(x) = d(5)
v (x)/3 . (60)
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Table 2. Coefficients for the Fock state contributions to the
parton distribution functions according to (58). The powers
ma(N) of (61) and (62) are also listed

q(N)
a b

(N)
a c

(N)
a d

(N)
a ma(N)

u(3)
v 14 · 140

29 − 6
7

12
35 3

d(3)
v

140
29 3 12

5 3

u(4)
v 17 · 990

37 − 45
34

39
68 7

d(4)
v

990
37

3
2

3
4 7

g(4) 7 · 990
37 2 9

7 5

u(5)
v 14 · 792

29 − 15
14

5
14 7

d(5)
v

792
29

3
2

2
3 7

One observes that all contributions appear in the form
xn (1−x)m times a polynomial in (1−x) which is generated
by the asymmetries in the distribution amplitudes, i.e.
their departure from the asymptotic form. This holds for
polynomial distribution amplitudes in general. The lead-
ing power ma(N) of (1 − x) in q(N)

a (x) is generated by
the corresponding asymptotic distribution amplitude; for
quark distributions one has

nq = 1 , mq(N) = 2N + 2lg − 3 , (61)

and for the gluon distribution

ng = 3 , mg(N) = 2N + 2lg − 5 , (62)

where lg is the number of gluons in the N -particle Fock
state. We see that higher Fock states generate higher pow-
ers ma(N). Summing over all Fock states the leading pow-
ers of (1−x) for valence quark, gluon and sea quark distri-
butions come out as 3, 5 and 7, respectively. For the con-
tributions from the N = 5 Fock state with three quarks
and two gluons the leading powers are very high, mq = 11,
mg = 9, which is why we do not consider it here.

Our results for the valence parton distributions respect
the usual counting rule behaviour [5]. In other cases our
results for the leading powers of 1 − x differ from those
obtained from perturbative QCD arguments by Brodsky,
Burkardt and Schmidt [35]. This is not a contradiction
since we are dealing with soft physics contributions. The
perturbative results of [35] manifest themselves only in a
region 1 − ε ≤ x ≤ 1 where the perturbative QCD contri-
bution dominates over the soft contribution. To estimate ε
we remark that the overlap formulae (56), (67) for parton
distributions and elastic form factors are exact if one takes
the full wave functions instead of their soft parts consid-
ered in this work [4,5]. Using the relations (68) or (69)
between both types of quantities we obtain ε ∼ 1/(−a2

3 t̄ ),
where t̄ is the momentum transfer in F1 p(t) at which the
perturbative components of the wave functions start to
dominate over the soft ones. For the wave function we
consider here, −t̄ is of the order of 500 GeV2 [16].

If for simplicity we take the transverse size parameters
for the N = 3, 4, 5 Fock states to be equal,

a5 = a4 = a3 , (63)

then only one parameter remains free for each of the new
Fock state wave functions, namely its probability (or the
constants fN , cf. (55)). We fix these two parameters by
fitting our gluon and antiquark distributions (58) to the
Glück-Reya-Vogt (GRV) parametrisation [28] at large x.
A best fit is obtained for the values

P4 = P5 = 0.1 ,
f4 = 1.06 × 10−4 GeV3 ,

f5 = 3.64 × 10−6 GeV4 . (64)

The results of the fit are shown in Fig. 3 and compared
to the GRV parametrisation.16 The agreement with the
distribution functions given in [36] is of similar quality at
large x. All distribution functions of the proton are repro-
duced quite well down to x of about 0.5, for the sea quark
distribution even to lower values. We see how the first
three Fock states control the large-x (x>∼ 0.5) behaviour of
the distribution functions; certainly the situation could be
improved by including even higher Fock states. We empha-
sise that the asymmetries in the distribution amplitudes
play an important role: they push up uv and diminish dv

at the same time, thus producing a ratio uv/dv of about
five at large x while totally symmetric distribution ampli-
tudes yield a ratio of only two, in sharp conflict with the
GRV parametrisation. We also note that our ratio dv/uv

tends to 1/14 in the limit x → 1 and differs from the SU(6)
result of 1/5 [37].

The spin dependent parton distributions allow another
interesting test of our approach. These distributions mea-
sure the difference between the distributions of type-a par-
tons with positive and negative helicity. In analogy to the
unpolarised distribution discussed above we find within
our model

∆q(N)
a (x) = ∆b(N)

a PN xna (1 − x)ma(N) (65)

×
[
1 +∆c(N)

a (1 − x) +∆d(N)
a (1 − x)2

]
with the coefficients listed in Table 3. The powers na and
ma(N) are the same as the ones for unpolarised distri-
butions, given by (61). As a consequence of our simple
assumptions that the gluons and sea quark pairs are unpo-
larised we have ∆g(4)(x) = ∆q(5)(x) = 0. Note also that
∆q(N)

a (x) ∝ q(N)
a (x) at large x. While the constants of

proportionality are close to unity for the valence u-quark
distributions, they are negative or even zero for valence
d-quarks.

In Fig. 4 we compare our predictions with the param-
eterisation proposed in [38]. As we see, surprisingly good
agreement is obtained in our simple model. There is also

16 At large x the 1998 GRV parametrisation is rather close to
the 1995 version. We compare here with the LO parametrisa-
tion of the 1995 version.
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Fig. 3a–d. Parton distributions obtained from the N = 3, 4, 5 Fock states (P3 = 0.17, P4 = P5 = 0.1). The model results are
compared to the 1995 GRV LO parametrisation [28] at a factorisation scale of 1 GeV. For the sea distributions we sum over
the three flavours

Table 3. Coefficients for the Fock state contributions to the
spin-dependent parton distribution functions according to (66).
The powers ma(N) from (61) are also given

∆q(N)
a ∆b

(N)
a ∆c

(N)
a ∆d

(N)
a ma(N)

∆u(3)
v 40 · 140

87 − 21
20

9
40 3

∆d(3)
v − 140

87 3 9
5 3

∆u(4)
v 16 · 990

37 − 3
2

9
16 7

∆d(4)
v 0 0 0 7

∆u(5)
v 40 · 264

29 − 6
5

27
80 7

∆d(5)
v − 264

29
3
2

1
2 7

fair agreement with the polarised parton distributions de-
termined in [39] at large x. The relative strength of ∆uv

and ∆dv in that region reflects the spin structure of the
valence Fock state and the asymmetry in its distribution
amplitude.

7 Form factors

According to Drell and Yan [14] the Dirac form factor can
be represented as the overlap of LCWFs as

F1(t) =
∑
N

F
(N)
1 (t) (66)

with individual Fock state contributions

F
(N)
1 (t) =

∑
a

ea

∑
j

∑
β

∫
[dx̃]N [d2k̃⊥]N

Ψ∗
Nβ(x̂′

i, k̂
′
⊥i)ΨNβ(x̃i, k̃⊥i) , (67)
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Fig. 4a,b. Spin-dependent valence quark distributions ∆uv and ∆dv. The model results are compared to the parametrisation
of [38]

where j runs over all partons of type a. We use our sym-
metric frame to evaluate the overlap, the primed and un-
primed arguments in (67) are therefore related by (15)
and we have ∆2

⊥ = −t. Performing the k⊥-integrals for
the N = 3, 4, 5 Fock states with the help of (52), we arrive
at

F
(N)
1 p (t) =

∫
dx exp

[
1
2
a2

N t
1 − x

x

]
×

{
eu u(N)

v (x) + ed d(N)
v (x)

}
,

F
(N)
1 n (t) =

∫
dx exp

[
1
2
a2

N t
1 − x

x

]
×

{
eu d(N)

v (x) + ed u(N)
v (x)

}
. (68)

for the proton and neutron form factors. The appearance
of the parton distributions here is a consequence of the fact
that the integrand in their overlap representation (56) is
obtained from the one in (67) by setting ∆⊥ = 0. Thus the
k⊥-integrals only differ by the exponential factor of (53)
at ζ = 0, which arises from the Gaussian k⊥-dependence
of our wave functions.

It is now suggestive to assume that the k⊥-dependence
of all Fock state wave functions is given by the Gaussian
(43) and to approximate all aN with a common transverse
size parameter a. Summing over N in (66) then leads to
a representation of form factors in terms of the valence
quark distribution functions:

F1 p(t) '
∫

dx exp
[
1
2
a2 t

1 − x

x

]
× {eu uv(x) + ed dv(x)} ,

F1 n(t) '
∫

dx exp
[
1
2
a2 t

1 − x

x

]
× {eu dv(x) + ed uv(x)} , (69)

a formula recently proposed by Radyushkin [17]. Remark-
ably, inclusive observables are related to exclusive ones.
The chief advantage of this formula is its independence
from any explicit form of the distribution amplitudes. Of
course a common value for the transverse size parame-
ter for all Fock states is unrealistic: as we saw before
the valence Fock state is rather compact corresponding
to about a half of the charge radius. Consequently the
higher Fock states have to develop the full radius. For the
purpose of evaluating the form factors from (66) and (68)
we take a3 = a4 = a5 as before and put as a simple ansatz
aN = 1.3 a3 for N > 5, where the factor 1.3 is adjusted
to the data for F1 p. A substantially larger factor would
strongly suppress the higher Fock state contributions, a
smaller one would lead to large contributions exceeding
the form factor data.17 Then we set∑

N>5

q(N)
a (x) = qa(x) −

∑
N=3,4,5

q(N)
a (x) , (70)

where qa is taken from the GRV parametrisation [28] and
the three lowest Fock state contributions from our model.
In this way we account for the sum of all Fock states in a
phenomenological way. The results obtained in this man-
ner are confronted to the data [40,41] in Fig. 5.

For large values of the momentum transfer our simple
model agrees very well with the data, i.e. the dimensional
counting behaviour is well mimicked by soft physics. Be-
low about 10 GeV2 the model is not perfect, deviations of
the order of 20%, i.e. of the order of m2/(−t), are to be
noticed. Such corrections are to be expected in our model,
where proton spin-flip effects and orbital angular momen-
tum in the wave functions are not taken into account as
we discussed in see Sect. 4.2. In reality spin flip effects are
17 We note at his point that in contrast to our ansatz a trans-
verse size parameter a = 0.84 GeV−1 common to all Fock states
was used in [17].
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Fig. 5a,b. Electromagnetic form factor of the proton and neutron using the model parton distributions for the valence Fock
state only, the N = 3, 4, 5 Fock states, and all Fock states on the basis of the GRV parametrisation at the factorisation scale
1 GeV [28], cf. (70). Data for F1 and GM are taken from [40,41]

not very small as is indicated by the difference between the
Dirac and magnetic form factors, F1 and GM , see Fig. 5.
In view of these approximations we are satisfied with our
results even in the range 5 GeV2 < −t < 10 GeV2. We ob-
serve from Fig. 5 the dominance of the valence Fock state
contributions. For −t > 10 GeV2 all other Fock states
contribute less than 20%; each individual Fock state pro-
vides only a small correction to the form factor. This can
be regarded as a justification of the rough treatment of
the N = 4 and 5 Fock states introduced in Sect. 5. We
also remark that the parameters f3 and a3 of (44) used
in this work have been obtained in [16] by requiring that
the data for F1 p be saturated by the soft overlap of the
valence Fock state only. Given the uncertainties just dis-
cussed and our simplified treatment of the higher Fock
states we think however that readjusting these parame-
ters is not necessary here. As for the neutron form fac-
tor, we mentioned in Sect. 6 that totally symmetric wave
functions lead to the relation u(N)

v (x) = 2d(N)
v (x), which

according to (68) would lead to a vanishing contribution
to F1 n. Hence the asymmetries in the LCWFs generate
the neutron form factor.

For wave functions of the type we are considering here
the leading powers mq(N) of (1 − x) in the valence distri-
butions q(N)

v (x) correspond to leading powers mq(N) + 1
of 1/t in the asymptotic behaviour of the correspond-
ing Fock state contribution to F1(t).18 Hence for suffi-
ciently large −t the valence Fock state dominates the form
factor with only small corrections from the next Fock
states. It is important to realise that this asymptotic be-

18 The Drell-Yan result [14], for which the power mq of (1−x)
in the valence quark distribution functions corresponds to a
power (mq +1)/2 of 1/t in the form factor, is only obtained for
wave functions factorising in x and k⊥ (i.e. for Ω not depending
on xi).

haviour of the overlap contributions does not set in before
−t ' 100 GeV2 since the expansion of the integrals ap-
pearing in (68) into a power series in 1/t converges very
slowly. We remark that the dominance of the soft overlap
contribution is consistent with the strength of the per-
turbative contribution to the proton form factor, which
drops as 1/t2. As reported in [16] the perturbative contri-
bution evaluated from our valence Fock state wave func-
tion can be neglected for experimentally accessible mo-
mentum transfers. For −t larger than about 500 GeV2,
however, the perturbative contribution will dominate since
our overlap contribution asymptotically behaves as 1/t4.

In analogy to the electromagnetic case we can also cal-
culate the charged current axial form factor of the nucleon.
The various contributions are now weighted by the quark
helicities and isospin, leading to

FA =
∑
N

∫
dx exp

[
1
2
a2

N t
1 − x

x

]
×

{
∆u(N)

v (x) + 2∆u(N)(x)

−∆d(N)
v (x) − 2∆d(N)(x)

}
. (71)

Evaluating the axial form factor along the lines described
for the electromagnetic case we find fair agreement with
the dipole parametrisation of the admittedly low-t neu-
trino data [42].

8 Large angle Compton scattering

Using our expressions (30), (31) for the handbag ampli-
tude and neglecting the contribution from the proton spin
flip form factor RT , we obtain the cross section for real
Compton scattering with unpolarised photons and protons
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Fig. 6a,b. The form factors RV (t) and RA(t), evaluated with our model for LCWFs

as

dσ
dt

=
2πα2

em

s2

[
−u

s
− s

u

]
(72)

×
{

1
2

(
R2

V (t) +R2
A(t)

) − us

s2 + u2

(
R2

V (t) −R2
A(t)

)}
.

As explained in Sect. 3.1.2 we can also calculate the Comp-
ton amplitude as an overlap of LCWFs in the symmetric
frame of Sect. 2.2. Using the same approximations as in
the handbag calculation, Sect. 4.1, and comparing with
(30), (31) we obtain the analogues of the Drell-Yan for-
mula (66), (67) for our form factors RV and RA. With
our Gaussian ansatz (43) for the k⊥-dependence of the
LCWFs and the integral (51) the form factors RV and
RA can then be written as

RV (t) =
∑
N

∫
dx
x

exp
[
1
2
a2

N t
1 − x

x

]
×

{
e2u [u(N)

v (x) + 2 u(N)(x)]

+ e2d [d(N)
v (x) + 2 d(N)(x)]

+ e2s 2 s(N)(x)
}
,

RA(t) =
∑
N

∫
dx
x

exp
[
1
2
a2

N t
1 − x

x

]
×

{
e2u [∆u(N)

v (x) + 2∆u(N)(x)]

+ e2d [∆d(N)
v (x) + 2∆d(N)(x)]

+ e2s 2∆s(N)(x)
}
, (73)

in close analogy to the expressions (68) for the Dirac form
factor F1. Our numerical predictions for RV and RA are
shown in Fig. 6.

If one makes the assumption that RA = RV as was
done in [17] then one obtains the suggestive result that

the cross section for Compton scattering on the proton
is just given by the familiar Klein-Nishina expression for
Compton scattering on a free quark times the square of
the form factor RV (t), which describes the target struc-
ture. In our model the ratio of RA and RV is however
rather far from 1 for the values of −t we consider, cf.
Fig. 6. From (73) one sees that RA ≈ RV would require
all quarks and antiquarks to be completely polarised along
the proton spin, i.e. q(N)

a (x) ≈ ∆q(N)
a (x) for all N and a,

in the range of x dominating the integrals. For u-quarks
this holds indeed if x is close to 1, but not for the inter-
mediate x that are important at our values of −t, while
for d-quarks the unpolarised and polarised quark distri-
butions even have opposite sign. We therefore keep both
terms R2

V (t) +R2
A(t) and R2

V (t) −R2
A(t) in (72); they re-

flect the fact that the proton target has a nontrivial quark
spin structure. Using measurements at different values of
s and t and a Rosenbluth-type separation it will in prin-
ciple be possible to isolate the new form factors |RV (t)|
and |RA(t)| from sufficiently accurate experimental data,
and to compare them with our predictions.

In Fig. 7 we show our results for the Compton cross
section. Given the quality of the data, and the small en-
ergies and low values of −t and −u at which they are
available, our predictions compare fairly well with exper-
iment. As a minimum condition for our approximations
discussed in Sect. 4.1 to be applicable we only take into
account data points satisfying −t, −u ≥ 2.5 GeV2. Better
data and data at larger energies are definitely required for
a severe check of the new approach and its confrontation
with the hard scattering mechanism. For comparison we
also show predictions for the Compton cross section at a
photon energy of 12 GeV that may be reached at an up-
graded JLab facility [43]. At such an energy and at c.m.
scattering angles around 90◦ the kinematical conditions
for the approach presented here would be satisfied. Still
higher energies, perhaps accessible at ELFE [44], would
be even better.
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Fig. 7a,b. The Compton cross section scaled by s6 versus cos θ, where θ is the scattering angle in the c.m. Data, for −t, −u ≥
2.5 GeV2 only, are taken from [45]. Left: Model predictions obtained from the GRV parametrisation [28] for various photon
energies in the laboratory frame. Right: Model predictions decomposed into separate Fock state contributions at a photon energy
of 5 GeV

Dimensional counting [46] predicts that the Compton
cross section scaled by s6 only depends on the ratio t/s
or, equivalently, on the scattering angle θ in the photon-
proton c.m. From Fig. 7 one observes that the soft con-
tributions do not exhibit this counting rule behaviour, al-
though they are close to it. s6-scaling holds in our ap-
proach as long as RV and RA behave as 1/t2. As one can
observe from Fig. 6 this is approximately true for −t in
the range from about 5 to 15 GeV2. For energies between,
say, 3 and 6 GeV in the laboratory frame such t-values
are only reached in the backward hemisphere. In this case
the energy dependence of the scaled Compton cross sec-
tion is hence much milder in the backward than in the
forward hemisphere (see Fig. 7). For energies as large as
for instance 12 to 15 GeV the situation is reversed. The
t-values are so large in the backward hemisphere that RV

and RA do not behave as 1/t2 any more but gradually
turn into the soft physics asymptotics 1/t4. Consequently
the scaled Compton cross section exhibits a stronger en-
ergy dependence in the backward hemisphere than in the
forward one. For very high energies the soft physics con-
tribution to the large angle Compton cross section scales
as s−10. We note that Radyushkin’s result [17] that all
the curves for different energies intersect each other at
cos θ = −0.6 does not hold in general. This result may
depend on specific assumptions made in [17] and holds
at best in a rather limited region of energy. It is an goal
of utmost importance to test the energy dependence of
the Compton cross section experimentally in the relevant
kinematical region s,−t,−u � m2. The present data are
neither accurate enough nor really satisfy the kinematical
requirements.

The Compton cross section has also been calculated
within perturbative QCD [47] and within a diquark model
[27] that combines perturbative elements with additional

soft physics (correlations in the proton wave function mod-
elled as diquarks). Both models can also account for the
data although, as we said before, the quality of the data
is insufficient for a severe test of the models. The di-
quark model does not lead to the dimensional counting
behaviour either; it turns out that the energy dependence
of the scaled cross section in the forward and backward
hemisphere predicted by that model is opposite to the
one of the approach proposed here and shown in Fig. 7.

In the leading twist hard scattering calculation of [47]
proton distribution amplitudes are employed which are
strongly concentrated in the end point regions, and thus
differ drastically from the one determined in [16] and used
here (cf. (42)). For such distribution amplitudes the per-
turbative analysis of Compton scattering, quite like that
of the nucleon form factor [8], may be afflicted by large
contributions from the soft end point regions, where per-
turbative QCD is not applicable as we mentioned in the
introduction.19 We emphasise that in the perturbative ap-
proach the dimensional counting rule behaviour of the
Compton cross section is modified by powers of log s aris-
ing from running of the the strong coupling constant αs

(dσ/dt ∝ α4
s) and from the evolution of the proton wave

function. These effects have not been taken into account
as yet. It remains to be seen how much these logs will
change the results quoted in [47]. One may also expect

19 RV (t) and RA(t) evaluated from a wave function com-
posed of the distribution amplitude proposed in [6] and the
Gaussian (43) exhibit approximate 1/t2 scaling behaviour in a
much larger t-region than found from the distribution ampli-
tude (42). Also the maximum values of RV (t) and RA(t) are
larger by a factor 5 to 8. This parallels the behaviour of the
electromagnetic form factors, see [16]. As a consequence the
Compton cross section does not show approximate s−6 scaling
behaviour for photon energies between, say, 3 and 15 GeV.
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that the inclusion of transverse momentum effects and Su-
dakov suppressions in the perturbative analysis leads to a
similarly strong reduction of the Compton amplitude as
was found for the proton form factor [12]. In view of this
it seems premature to us to claim a success of the purely
perturbative approach in Compton scattering.

9 Skewed parton distributions

In this section we are going to investigate skewed parton
distributions (SPDs) [3,48]. These distributions are the
non-perturbative input for Compton scattering in the deep
virtual region of small −t but largeQ2 and s. Factorisation
of the process into hard and soft physics [3,23] assures
that, like the usual parton distributions, the SPDs are
universal in the sense that they occur in different hard
processes, e.g. in hard meson production.

As explained in Sect. 3.1.2 we will restrict our investi-
gation of SPDs to the kinematical region where they de-
scribe how a parton with momentum k is taken out from
the proton with momentum p and, having undergone a
hard scattering, inserted back with momentum k+∆ as a
parton inside the scattered proton with momentum p+∆
(see Fig. 1(b)). Due to this restriction we are unable to
calculate the full amplitude of the deep virtual Compton
scattering process, which includes the region 0 < x < ζ
where we do not have a simple representation of SPDs as
an overlap of LCWFs. In a restricted kinematical region,
however, we are able to calculate the process independent
SPDs, which are of interest in their own. We will also be
able to check whether they behave correctly in the formal
forward limit ∆ = 0, and whether they satisfy bounds
coming from positivity requirements [49–51].

To date essentially nothing is known experimentally
about skewed distributions. However, various model es-
timates of the SPDs have been made recently: for in-
stance a bag model calculation [52], a chiral quark-soliton
model [53], and a scalar toy model [3]. A number of sim-
ple ansätze has also been proposed [51,54]. In particular
the question whether there is a strong dependence on the
skewedness parameter ζ is being debated.

The spin independent skewed distributions are defined
by20

p+
∫
dz−

2π
eixp+z− 〈p′|ψa(0) γ+ ψa(z−)|p〉

= F̃ a
ζ (x; t) ū(p′) γ+ u(p) + “K̃-term” , (74)

where here and in the following a denotes a quark flavour,
antiquarks being explicitly labelled by a. The K̃-term in
(74) goes with the tensor current of the proton and is re-
lated to proton helicity flip. Like the Pauli form factor F2
and our form factor RT we cannot evaluate it in our model
as explained in Sect. 4.2. In the definition (74) we follow
20 For convenience we do not display the link-operator needed
to render the definition gauge invariant, assuming the use of a
light-cone gauge combined with an appropriate choice for the
integration path which reduces the link-operator to unity.

the conventions of Radyushkin for nonforward distribu-
tions, cf. (9.1) and (9.2) of [3]. The kinematical variables
x and ζ turn out to be most convenient for calculating
the overlap of LCWFs. The relation to Ji’s original defini-
tion of off-forward distributions, where a different choice
of variables is made, can be found in [3], (9.6) and (9.7),
and in [48] (24) and (25).

The matrix element in (74) is nonzero in the range
−1+ζ < x < 1, cf. [3,25,48]. Re-interpreting a quark with
negative momentum fraction as an antiquark with positive
fraction one finds that −1 + ζ < x < 0 describes the
emission and absorption of an antiquark, just as ζ < x < 1
does for a quark, while in the region 0 < x < ζ the proton
p emits a quark-antiquark pair and is left as a proton with
momentum p+∆.

The definition (74) reveals the close relationship of
SPDs with the usual quark distributions and with the
Dirac form factor. Indeed one finds the reduction formulas

F̃ a
ζ=0(x; t = 0) = qa(x) (75)

and ∑
a

ea

∫ 1

−1+ζ

F̃ a
ζ (x; t) dx = F1(t) . (76)

Equation (75) can be explicitly checked in our results,
while we cannot evaluate the moments in (76), which con-
tain the region 0 < x < ζ we do not model here, except in
the case ζ = 0.

We now turn to the derivation of an overlap formula
for the SPDs. In close analogy to the steps that lead to
(29) the amplitude for DVCS can be written in terms of
proton matrix elements as

A =
∑

a

(eea)2
∫ 1

−1+ζ

dx
2
√|xx′|

∑
λ

∫
dz−

2π
ei xp+z−

×〈p′|ψa(0) γ+ 1 + λγ5

2
ψa(z−) |p〉 (77)

× [
θ(ζ < x < 1) ū(k̄′, λ)H(k̄′, k̄)u(k̄, λ)

− θ(0 < x < ζ) v̄(−k̄′,−λ)H(k̄′, k̄)u(k̄, λ)
+ θ(−1 + ζ < x < 0) v̄(−k̄′,−λ)H(k̄′, k̄)v(−k̄,−λ)

]
with the conventions for spinors given before (28). The
different kinematical regions mentioned above can easily
be recognised. The hard scattering is now approximated
as collinear, neglecting −t and m2 compared with Q2 and
setting k̄ = [xp+, 0,0⊥], k̄′ = [x′p+, 0,0⊥]. On the other
hand, direct calculation of the overlap diagrams start-
ing from the Fock state decomposition of the proton (cf.
Sect. 5) gives the contribution of the region ζ < x < 1 to
the amplitude as

A′ =
∑

a

(eea)2
∫ 1

ζ

dx
∑
N

∑
j

∑
β

∫
[dx]N [d2k⊥]N

δ(x− xj)
1√
xjx′

j

(1 − ζ)1− N
2 (78)

×Ψ∗
Nβ(x̆′

i, k̆
′
⊥i)ΨNβ(xi,k⊥i) ū(k̄′, λ)H(k̄′, k̄)u(k̄, λ)
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where j runs over quarks of flavour a. Note that the label
β includes a dependence on the parton spin λ. The argu-
ments of the outgoing wave function x̆′

i and k̆′
⊥i are related

to xi and k⊥i by (16). From the comparison of (78) with
(77) and the definition (74) we obtain the overlap formula
for spin-independent SPDs in the region ζ < x < 1:

F̃ a (N)
ζ (x; t) = (1 − ζ)

1−N
2

∑
j

∑
β

∫
[dx]N [d2k⊥]N

δ(x− xj) Ψ∗
Nβ(x̆′

i, k̆
′
⊥i)ΨNβ(xi,k⊥i) (79)

with j again running over all quarks of flavour a. Com-
paring with (56) we see that the boundary condition (75)
is correctly implemented in our approach. As for the sum
rule (76) we find with (15) and (16) that in the case ζ = 0
the overlap expression (79) and the corresponding contri-
bution from antiquarks reproduce the Drell-Yan formula
(66).

We notice that for ζ < x < 1 the r.h.s of (79) has
the structure of a scalar product in the Hilbert space of
wave functions ΨNβ(xi,k⊥i). Writing down the Cauchy-
Schwarz inequality for (79) and using the reduction for-
mula (75) we find

∣∣∣ F̃ a (N)
ζ (x; t)

∣∣∣ ≤ 1√
1 − ζ

√
q(N)

a (x) q(N)
a

(
x−ζ
1−ζ

)
(80)

for the contribution of each Fock state. Notice that at
the points x = ζ and x = 1 both sides of (80) are zero
because in the corresponding overlap integrals there are
wave functions taken at their end points. Summing (79)
over all Fock states one obtains the analogue of (80) for
the complete distributions; it is precisely the positivity
constraint on SPDs derived by Pire, Soffer and Teryaev
[50], which is thus satisfied by the overlap formula (79).21

To discuss the emission and reabsorption of an anti-
quark it is useful to define F̃ a

ζ (x; t) by the r.h.s. of (74)
with the field operators replaced with the charge con-
jugated ones. One easily finds the relation F̃ a

ζ (x; t) =
−F̃ a

ζ (ζ − x; t). In the region ζ < x < 1 the distribu-
tion F̃ a

ζ (x; t) describes the emission of an antiquark with
momentum fraction x and its reabsorption with fraction
x′ = x − ζ; along the same lines as above one obtains its
overlap representation as the r.h.s. of (79) with j running
over antiquarks instead of quarks. One then has of course
the analogues of the reduction formula (75) and the bound
(80) for F̃ a

ζ (x; t) and the usual antiquark distributions.
Inserting our N = 3, 4, 5 Fock state wave functions of

Sect. 5 in (79) we obtain for the skewed u and d valence
distributions

F̃ a (N)
ζ (x; t) − F̃ a (N)

ζ (x; t)

= b(N)
a PN (1 − ζ)− N+1

2 −lg

21 Notice that it is satisfied for all t in the physical region
t ≤ −ζ2m2/(1 − ζ), cf. (3), with the upper bound being t-
independent.

× ΥN

(
x, ζ;−t (1 − ζ) − ζ2m2

)
xna(1 − x)ma(N) (81)

×
[
(1 − ζ) + c(N)

a

(
1 − ζ

2

)
(1 − x) + d(N)

a (1 − x)2
]
,

where we remember the expression (53)

ΥN (x, ζ;∆2
⊥) =

(
2

2 − ζ

)N−2 2(x− ζ)
(x− ζ) + x(1 − ζ)2

× exp
[ − a2

N ∆2
⊥ (1 − x)

(x− ζ) + x(1 − ζ)2

]
given at the end of Sect. 5 and make use of the relation
(10) between ∆2

⊥, t and ζ. The exponents na, ma(N) and
the coefficients b(N)

a , c(N)
a and d(N)

a are the same as for the
valence quark distributions discussed in Sect. 6, cf. (61)
and Table 2, and lg is the number of gluons in the corre-
sponding Fock state. For ζ = 0 our result (81) simplifies
to

F̃ a (N)
ζ=0 (x; t) − F̃ a (N)

ζ=0 (x; t)

=
(
q(N)

a (x) − q(N)
a (x)

)
exp

[
1
2
a2

N t
1 − x

x

]
, (82)

which is the origin of our simple representations (68) and
(73) of form factors. Finally we find that with our wave
functions the skewed antiquark and s-quark distributions
are related with the d valence distribution by the ana-
logues of (59) and (60).

In Fig. 8 we display our results (81) summed over the
N = 3, 4, 5 Fock states for fixed t-values of −0.5 GeV2 and
−1.5 GeV2. We remember from the end of Sect. 2.1 that
−t ≥ ζ2m2/(1 − ζ). At fixed t this imposes ζ ≤ ζmax with

ζmax =

√
t (t− 4m2) + t

2m2 . (83)

We remark at this point that the t-dependence of the SPDs
residing in the factor ΥN does not factorise in our approach
but mixes with the dependence on x and ζ in the expo-
nent of (53); note that the transverse momenta k̆′

⊥i in the
overlap formula (79) implicitly depend on x, ζ and ∆⊥
through (16). A significant dependence on the skewedness
parameter ζ shows up in our results; a fact which is not
surprising since ζ determines the momentum fraction of
the active parton in the light-cone wave function of the
outgoing nucleon.

In Fig. 9 we plot the skewed u valence distributions at
fixed t and ζ as a function of x, comparing the contribution
from the N = 3 Fock state with the result summed over
N = 3, 4, 5. As for the usual parton distributions we see
how higher Fock states become more and more important
as x decreases. We notice that the values of x where this
happens increase somewhat with ζ; this can be understood
from the fact that at a given x the momentum fraction
of the parton going back into the proton decreases with
ζ. The area under a curve in Fig. 9 gives the u-quark
contribution of the regions −1 + ζ < x < 0 and ζ <
x < 1 to the form factor sum rule (76). We can see that
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Fig. 8a–d. Skewed parton distributions for u and d valence quarks in the region ζ < x < 1, obtained from the N = 3, 4, 5 Fock
states (P3 = 0.17, P4 = P5 = 0.1). The values of ζmax are 0.52 at t = −0.5GeV2 and 0.71 at t = −1.5GeV2

higher Fock states become less important as −t increases,
in agreement with what we have found for F1(t) in Sect. 7.

For the usual parton distributions we know that both
qv(x) and q(x) become singular for x → 0, which cannot
be obtained from any finite number of Fock state contri-
butions, all of which vanish at x = 0. The question what
the situation is for x → ζ in skewed distributions, when
the momentum fraction x′ becomes zero while x remains
finite, cannot be answered in the framework of this pa-
per. We therefore do not claim that our results for the
contribution of the first tree Fock states describe the full
distribution as x comes close to ζ.

The definition of spin dependent SPDs is obtained
from (74) by the replacements γ+ → γ+γ5 and F̃ a

ζ → G̃ a
ζ ;

for antiquarks one has G̃ a
ζ (x; t) = G̃ a

ζ (ζ − x; t). The ana-
logue of the K̃-term goes now with the pseudoscalar cur-
rent of the proton and is again related to proton spin flip.
From the appropriate overlap formulae we find the spin
dependent skewed valence distributions

G̃ a (N)
ζ (x; t) − G̃ a (N)

ζ (x; t)

= ∆b(N)
a PN (1 − ζ)− N+1

2 −lg

× ΥN

(
x, ζ;−t (1 − ζ) − ζ2m2

)
xna(1 − x)ma(N) (84)

×
[
(1 − ζ) +∆c(N)

a

(
1 − ζ

2

)
(1 − x) +∆d(N)

a (1 − x)2
]
,

where the coefficients ∆b(N)
a , ∆c(N)

a , and ∆d
(N)
a are the

same as the ones for the spin dependent valence distri-
butions listed in Table 3. Evidently the spin dependent
skewed distributions reduce correctly to the usual ones in
the limit ζ → 0 and t → 0.

10 Summary

In the present paper we have linked ordinary and skewed
parton distributions to soft overlap contributions to elastic
form factors and to large angle Compton scattering using
nucleon light-cone wave functions.

We have investigated how and under which conditions
overlap contributions to exclusive processes can be ex-
pressed in terms of LCWFs. For large angle Compton
scattering, at large values of the Mandelstam invariants
s, −t and −u, we can calculate the soft overlap contribu-
tion using its factorisation into handbag diagrams, i.e. into
soft parton emission and reabsorption by the nucleon and
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Fig. 9a–f. Skewed valence u-quark parton distributions in the region ζ < x < 1 as a function of x at fixed ζ and t. Full lines
show the sum of contributions from the N = 3, 4, 5 Fock states and dashed ones the contribution from the N = 3 Fock state
alone. The vertical lines in the plots indicate the value of x where the N = 3 contribution is 80% of the one summed over
N = 3, 4, 5

a hard parton-photon scattering. In the case of deeply vir-
tual Compton scattering, with large Q2 and s but small
−t, where we cannot express the amplitude as an over-
lap of soft LCWFs, we have calculated the skewed parton
distributions in the large-x region.

For the LCWF of the three-quark nucleon Fock state
we have taken over the parametrisation of [16], which in-
volves only two parameters adjusted to data. For the Fock
states with an additional gluon or quark-antiquark pair
we have taken a very simple ansatz, introducing only two

more parameters, which are fitted to the gluon and sea
quark parton distributions from the GRV analysis [28].
The values of all four parameters come out in a range com-
patible with their physical meaning of Fock state proba-
bilities or a transverse size parameter. In the overlap con-
tributions to Compton scattering and the form factor we
also estimate the net effect of all higher Fock states, using
as input the difference between the GRV parton distri-
butions and those calculated from the three lowest Fock
states only.
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The phenomenology we can do with our ansatz is very
rich: we reproduce well the unpolarised and polarised par-
ton distributions down to x around 0.5, as well as the data
for the nucleon Dirac form factors and for real Compton
scattering at large c.m. angles. The inclusion of higher
Fock states in the soft overlap contributions confirms that
as −t increases the lowest Fock states become increasingly
dominant and gives an impression of the accuracy one can
hope for by only taking into account the three quark state.
The LCWF of [16] was constructed so as to saturate the
elastic form factor data. The fact that with the same wave
function one obtains a reasonable description of Compton
scattering supports the hypothesis that there is no sizeable
perturbative contribution to either process in the range of
momentum transfers where data exist; soft physics seems
to dominate as was occasionally suggested in the literature
[7,8,10].

We stress that from the apparent agreement of exclu-
sive data with dimensional counting rules the dominance
of perturbative QCD contributions cannot be deduced.
Soft physics, as for instance the overlap-type contribu-
tions which we propose, provides broad maxima in scaled
observables such as t2F1(t) and the scaled Compton cross
section s6 dσ/dt, and thus mimics dimensional counting
rule behaviour in a certain range of t.

Compared with the elastic form factors large angle
Compton scattering has a second independent kinemat-
ical variable and thus provides an additional handle to
experimentally test how well dimensional counting rules
are satisfied. We further suggest that the imaginary part
of the scattering amplitude, which is accessible in virtual
Compton scattering with a polarised lepton beam, offers a
sensible tool to investigate which dynamical mechanism is
at work: in the handbag mechanism imaginary parts are
only generated through loop corrections to the photon-
parton subprocess, whereas in the hard scattering mecha-
nism real and imaginary parts generically are of the same
order of magnitude. Spin observables may also be sensi-
tive probes of the underlying physics, given the particular
helicity structure of the photon-parton scattering in the
handbag diagrams. In any case we see a strong motiva-
tion to have further and more accurate Compton data at
sufficiently high values of energy and momentum transfer.
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47. A. Kronfeld, B. Nižić, Phys. Rev. D 44, 3445 (1991); Er-
ratum Phys. Rev. D 46, 2272 (1992); M. Vanderhaeghen,
P.A.M. Guichon, J. Van de Wiele, Nucl. Phys. A 622,
144c (1997)

48. X. Ji, J. Phys. G 24, 1181 (1998)
49. A.D. Martin, M.G. Ryskin, Phys. Rev. D 57, 6692 (1998)
50. B. Pire, J. Soffer, O. Teryaev, hep-ph/9804284
51. A.V. Radyushkin, hep-ph/9805342
52. X. Ji, W. Melnitchouk, X. Song, Phys. Rev. D 56, 5511

(1997)
53. V.Yu. Petrov, P.V. Pobylitsa, M.V. Polyakov, I. Börnig,

K. Goeke, C. Weiss, Phys. Rev. D 57, 4325 (1998)
54. M. Vanderhaeghen, P.A.M. Guichon, M. Guidal,

Phys. Rev. Lett. 80, 5064 (1998); L. Mankiewicz, G.
Piller, T. Weigl, Eur. Phys. J. C 5, 119 (1998); A.V.
Radyushkin, hep-ph/9810466


